The Features of Neural Mechanisms Underlying Visceral Pain Processing in the Basolateral Amygdala of Rats with Post-Inflammatory or Stress-Induced Hyperalgesia
- Authors: Lyubashina O.A.1, Mehilyainen D.A.1, Sivachenko I.B.1
-
Affiliations:
- Pavlov Institute of Physiology of the Russian Academy of Sciences
- Issue: Vol 111, No 11 (2025)
- Pages: 1728–1749
- Section: EXPERIMENTAL ARTICLES
- URL: https://journals.rcsi.science/0869-8139/article/view/355683
- DOI: https://doi.org/10.7868/S2658655X25110035
- ID: 355683
Cite item
Abstract
About the authors
O. A. Lyubashina
Pavlov Institute of Physiology of the Russian Academy of Sciences
Email: lyubashinaoa@infran.ru
St. Petersburg, Russia
D. A. Mehilyainen
Pavlov Institute of Physiology of the Russian Academy of SciencesSt. Petersburg, Russia
I. B. Sivachenko
Pavlov Institute of Physiology of the Russian Academy of SciencesSt. Petersburg, Russia
References
- Farzaei MH, Bahramsoltani R, Abdollahi M, Rahimi R (2016) The Role of Visceral Hypersensitivity in Irritable Bowel Syndrome: Pharmacological Targets and Novel Treatments. J Neurogastroenterol Motil 22(4): 558–574. https://doi.org/10.5056/jnm16001
- Roberts C, Albusoda A, Farmer AD, Aziz Q (2021) Rectal Hypersensitivity in Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. Crohns Colitis 360 3(3): otab041. https://doi.org/10.1093/crocol/otab041
- Bonaz B, Sinniger V, Pellissier S (2024) Role of stress and early-life stress in the pathogeny of inflammatory bowel disease. Front Neurosci 18: 1458918. https://doi.org/10.3389/fnins.2024.1458918
- Lyubashina OA, Sivachenko IB, Panteleev SS (2022) Supraspinal Mechanisms of Intestinal Hypersensitivity. Cell Mol Neurobiol 42(2): 389–417. https://doi.org/10.1007/s10571-020-00967-3
- Vergnolle N (2008) Postinflammatory visceral sensitivity and pain mechanisms. Neurogastroenterol Motil 20 Suppl 1: 73–80. https://doi.org/10.1111/j.1365-2982.2008.01110.x
- Bisgaard TH, Allin KH, Keefer L, Ananthakrishnan AN, Jess T (2022) Depression and anxiety in inflammatory bowel disease: epidemiology, mechanisms and treatment. Nat Rev Gastroenterol Hepatol 19(11): 717–726. https://doi.org/10.1038/s41575-022-00634-6
- Staudacher HM, Black CJ, Teasdale SB, Mikocka-Walus A, Keefer L (2023) Irritable bowel syndrome and mental health comorbidity - approach to multidisciplinary management. Nat Rev Gastroenterol Hepatol 20(9): 582–596. https://doi.org/10.1038/s41575-023-00794-z
- Farmer AD, Aziz Q (2013) Gut pain & visceral hypersensitivity. Br J Pain 7(1): 39–47. https://doi.org/10.1177/2049463713479229
- Mayer EA, Ryu HJ, Bhatt RR (2023) The neurobiology of irritable bowel syndrome. Mol Psychiatry 28(4): 1451–1465. https://doi.org/10.1038/s41380-023-01972-w
- Lyubashina OA, Panteleev SS, Nozdrachev AD (2009) Amygdalofugal modulation of the autonomic centers of the brain. Nauka, Saint Petersburg. (In Russ.)
- Benarroch EE (2012) Central autonomic control. In: Robertson D, Biaggioni I, Burnstock G, Low PA, Paton JFR (eds) Primer on the Autonomic Nervous System, 3rd ed. Elsevier, Amsterdam, pp. 9–12. https://doi.org/10.1016/B978-0-12-386525-0.00002-0
- Chang X, Zhang H, Chen S (2024) Neural circuits regulating visceral pain. Commun Biol 7(1): 457. https://doi.org/10.1038/s42003-024-06148-y
- Lyubashina OA, Sivachenko IB, Busygina II (2021) Amygdalofugal Modulation of Visceral Nociceptive Transmission in the Rat Caudal Ventrolateral Medulla under Normal Conditions and Intestinal Inflammation. Russ Physiol 57: 1150–1162. (In Russ.)
- Neugebauer V (2020) Amygdala physiology in pain. Handb Behav Neurosci 26: 101–113. https://doi.org/10.1016/b978-0-12-815134-1.00004-0
- Veinante P, Yalcin I, Barrot M (2013) The amygdala between sensation and affect: a role in pain. J Mol Psychiatry 1(1): 9. https://doi.org/10.1186/2049-9256-1-9
- Lanters LR, Ohlmann H, Langhorst J, Theysohn N, Engler H, Leenhouwers A, Elsenbruch S (2024) Disease-specific alterations in central fear network engagement during acquisition and extinction of conditioned interoceptive fear in inflammatory bowel disease. Mol Psychiatry 29(11): 3527–3536. https://doi.org/10.1038/s41380-024-02612-7
- Mayer EA, Berman S, Suyenobu B, Labus J, Mandelkern MA, Naliboff BD, Chang L (2005) Differences in brain responses to visceral pain between patients with irritable bowel syndrome and ulcerative colitis. Pain 115(3): 398–409. https://doi.org/10.1016/j.pain.2005.03.023
- Han JS, Neugebauer V (2004) Synaptic plasticity in the amygdala in a visceral pain model in rats. Neurosci Lett 361(1–3): 254–257. https://doi.org/10.1016/j.neulet.2003.12.027
- Meerveld BG, Johnson AC (2018) Mechanisms of Stress-induced Visceral Pain. J Neurogastroenterol Motil 24(1): 7–18. https://doi.org/10.5056/jnm17137
- Gao F, Huang J, Huang GB, You QL, Yao S, Zhao ST, Liu J, Wu CH, Chen GF, Liu SM, Yu Z, Zhou YL, Ning YP, Liu S, Hu BJ, Sun XD (2023) Elevated prelimbic cortex-to-basolateral amygdala circuit activity mediates comorbid anxiety-like behaviors associated with chronic pain. J Clin Invest 133(9): e166356. https://doi.org/10.1172/JCI166356
- Thompson JM, Neugebauer V (2017) Amygdala Plasticity and Pain. Pain Res Manag 2017: 8296501. https://doi.org/10.1155/2017/8296501
- Xie Y, Shen Z, Zhu X, Pan Y, Sun H, Xie M, Gong Q, Hu Q, Chen J, Wu Z, Zhou S, Liu B, He X, Liu B, Shao X, Fang J (2024) Infralimbic-basolateral amygdala circuit associated with depression-like not anxiety-like behaviors induced by chronic neuropathic pain and the antidepressant effects of electroacupuncture. Brain Res Bull 218: 111092. https://doi.org/10.1016/j.brainresbull.2024.111092
- Xiao Y, Che X, Zhang PA, Xu Q, Zheng H, Xu G-Y (2016) TRPV1-mediated presynaptic transmission in basolateral amygdala contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation. Sci Rep 6: 29026. https://doi.org/10.1038/srep29026
- Reichmann F, Painsipp E, Holzer P (2013) Environmental enrichment and gut inflammation modify stress-induced c-Fos expression in the mouse corticolimbic system. PLoS One 8(1): e54811. https://doi.org/10.1371/journal.pone.0054811
- Welch MG, Anwar M, Chang CY, Gross KJ, Ruggiero DA, Tamir H, Gershon MD (2010) Combined administration of secretin and oxytocin inhibits chronic colitis and associated activation of forebrain neurons. Neurogastroenterol Motil 22(6): 654-e202. https://doi.org/10.1111/j.1365-2982.2010.01477.x
- Do J, Woo J (2018) From gut to brain: alteration in inflammation markers in the brain of dextran sodium sulfate-induced colitis model mice. Clin Psychopharmacol Neurosci 16(4): 422–433. https://doi.org/10.9758/cpn.2018.16.4.422
- Reichmann F, Hassan A, Farzi A, Jain P, Schuligoi R, Holzer P (2015) Dextran sulfate sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression in the amygdala-hippocampus network of mice. Sci Rep 5: 9970. https://doi.org/10.1038/srep09970
- Cao B, Wang J, Mu L, Poon DC, Li Y (2016) Impairment of decision making associated with disruption of phase-locking in the anterior cingulate cortex in viscerally hypersensitive rats. Exp Neurol 286: 21–31. https://doi.org/10.1016/j.expneurol.2016.09.010
- Chen CH, Tsai TC, Wu YJ, Hsu KS (2023) Gastric vagal afferent signaling to the basolateral amygdala mediates anxiety-like behaviors in experimental colitis mice. JCI Insight 8(12): e161874. https://doi.org/10.1172/jci.insight.161874
- Duan GB, Wang JW, Sun HH, Dong ZY, Zhang Y, Wang ZX, Chen Y, Chen Y, Huang Y, Xu SC (2024) Overexpression of EphB2 in the basolateral amygdala is crucial for inducing visceral pain sensitization in rats subjected to water avoidance stress. CNS Neurosci Ther 30(2): e14611. https://doi.org/10.1111/cns.14611
- Zhang H-H, Meng S-Q, Guo X-Y, Zhang J-L, Zhang W, Chen Y-Y, Lu L, Yang J-L, Xue Y-X (2019) Traumatic Stress Produces Delayed Alterations of Synaptic Plasticity in Basolateral Amygdala. Front Psychol 10: 2394. https://doi.org/10.3389/fpsyg.2019.02394
- Zhang JY, Liu TH, He Y, Pan HQ, Zhang WH, Yin XP, Tian XL, Li BM, Wang XD, Holmes A, Yuan TF, Pan BX (2019) Chronic Stress Remodels Synapses in an Amygdala Circuit-Specific Manner. Biol Psychiatry 85(3): 189–201. https://doi.org/10.1016/j.biopsych.2018.06.019
- Asim M, Wang H, Waris A, He J (2024) Basolateral amygdala parvalbumin and cholecystokinin-expressing GABAergic neurons modulate depressive and anxiety-like behaviors. Transl Psychiatry 14(1): 418. https://doi.org/10.1038/s41398-024-03135-z
- Prager EM, Bergstrom HC, Wynn GH, Braga MF (2016) The basolateral amygdala γ-aminobutyric acidergic system in health and disease. J Neurosci Res 94(6): 548–567. https://doi.org/10.1002/jnr.23690
- Li D, Li Y-Ch, Zhu Zh.-Y, Zhang F.-Ch, Zhao Q-Y, Jiang J-H, Shen B, Tang Y, Xu G-Y (2025) The paraventricular thalamus mediates visceral pain and anxiety-like behaviors via two distinct pathways. Neuron 113(1-15): e1-e7. https://doi.org/10.1016/j.neuron.2025.04.019
- Chung EK, Bian ZX, Xu HX, Sung JJ (2009) Neonatal maternal separation increases brain-derived neurotrophic factor and tyrosine kinase receptor B expression in the descending pain modulatory system. Neurosignals 17(3): 213–221. https://doi.org/10.1159/000224631
- Cui H, Sakamoto H, Higashi S, Kawata M (2008) Effects of single-prolonged stress on neurons and their afferent inputs in the amygdala. Neuroscience 152(3): 703–712. https://doi.org/10.1016/j.neuroscience.2007.12.028
- Ju T, Naliboff BD, Shih W, Presson AP, Liu C, Gupta A, Mayer EA, Chang L (2020) Risk and Protective Factors Related to Early Adverse Life Events in Irritable Bowel Syndrome. J Clin Gastroenterol 54(1): 63–69. https://doi.org/10.1097/MCG.0000000000001153
- Kearney DJ, Kamp KJ, Storms M, Simpson TL (2022) Prevalence of Gastrointestinal Symptoms and Irritable Bowel Syndrome Among Individuals With Symptomatic Posttraumatic Stress Disorder. J Clin Gastroenterol 56(7): 592–596. https://doi.org/10.1097/MCG.0000000000001670
- Ng QX, Soh AYS, Loke W, Venkatanarayanan N, Lim DY, Yeo WS (2019) Systematic review with meta-analysis: The association between post-traumatic stress disorder and irritable bowel syndrome. J Gastroenterol Hepatol 34(1): 68–73. https://doi.org/10.1111/jgh.14446
- Sivachenko IB, Pavlova MB, Yaido AI, Shiryaeva NV, Panteleev SS, Dyuzhikova NA, Lyubashina OA (2021) Spike Activity and Genome Instability in Neurons of the Amygdaloid Complex in Rats of Selected Strains with Contrasting Nervous System Arousability in Normal Conditions and Stress. Neurosci Behav Physiol 51: 620–628. https://doi.org/10.1007/s11055-021-01115-0
- Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96(3): 795–803.
- Lyubashina OA, Sivachenko IB, Sushkevich BM, Busygina II (2023) Opposing effects of 5-HT1A receptor agonist buspirone on supraspinal abdominal pain transmission in normal and visceral hypersensitive rats. J Neurosci Res 101(10): 1555–1571. https://doi.org/10.1002/jnr.25222
- Lyubashina OA, Sivachenko IB (2024) The 5-HT3 Receptor-Dependent Facilitatory Influence of the Infralimbic Cortex on the Caudal Ventrolateral Medulla Visceral Pain-Related Neurons and Its Colitis-Associated Changes in Rats. J Evol Biochem Physiol 60(3): 1198–1212. https://doi.org/10.1134/S0022093024030268
- Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates. 4th ed. Acad Press, London.
- Ness TJ, Gebhart GF (1988) Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudaffective reflexes in the rat. Brain Res 450(1–2): 153–169. https://doi.org/10.1016/0006-8993(88)91555-7
- Suzuki A, Li WM (2007) Changes in heart rate and blood pressure induced by noxious colorectal distension in anesthetized rats. Autonom Neurosci 135(1–2): 51. https://doi.org/10.1016/j.autneu.2007.06.073
- Sah P, Faber ES, Lopez De Armenita M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83(3): 803–834. https://doi.org/10.1152/physrev.00002.2003
- Meng X, Yue L, Liu A, Tao W, Shi L, Zhao W, Wu Z, Zhang Z, Wang L, Zhang X, Zhou W (2022) Distinct basolateral amygdala excitatory inputs mediate the somatosensory and aversive-affective components of pain. J Biol Chem 298(8): 102207. https://doi.org/10.1016/j.jbc.2022.102207
- Loh MK, Stickling C, Schrank S, Hanshaw M, Ritger AC, Dilosa N, Finlay J, Ferrara NC, Rosenkranz JA (2023) Lipopolysaccharide-induced sustained mild inflammation fragments social behavior and alters basolateral amygdala activity. Psychopharmacology (Berlin) 240(3): 647–671. https://doi.org/10.1007/s00213-023-06308-8
- Agostini A, Filippini N, Cevolani D, Agati R, Leoni C, Tambasco R, Calabrese C, Rizzello F, Gionchetti P, Ercolani M, Leonardi M, Campieri M (2011) Brain functional changes in patients with ulcerative colitis: a functional magnetic resonance imaging study on emotional processing. Inflamm Bowel Dis 17(8): 1769–1777. https://doi.org/10.1002/ibd.21549
- Fan Y, Bao C, Wei Y, Wu J, Zhao Y, Zeng X, Qin W, Wu H, Liu P (2020) Altered functional connectivity of the amygdala in Crohn's disease. Brain Imaging Behav 14(6): 2097–2106. https://doi.org/10.1007/s11682-019-00159-8
- Sun J, Sun W, Yue K, Zhang Y, Wu X, Liu W, Zou L, Shi H (2024) Abnormal Amygdala Subregion Functional Connectivity in Patients with Crohn's Disease with or without Anxiety and Depression. Behav Neurol 2024: 1551807. https://doi.org/10.1155/2024/1551807
- Aziz MNM, Kumar J, Muhammad Nawawi KN, Raja Ali RA, Mokhtar NM (2021) Irritable Bowel Syndrome, Depression, and Neurodegeneration: A Bidirectional Communication from Gut to Brain. Nutrients 13(9): 3061. https://doi.org/10.3390/nu13093061
- Hong JY, Kilpatrick LA, Labus J, Gupta A, Jiang Z, Ashe-McNalley C, Stains J, Heendeniya N, Ebrat B, Smith S, Tillisch K, Naliboff B, Mayer EA (2013) Patients with chronic visceral pain show sex-related alterations in intrinsic oscillations of the resting brain. J Neurosci 33(29): 11994-12002. https://doi.org/10.1523/JNEUROSCI.5733-12.2013
- Qi R, Liu C, Ke J, Xu Q, Ye Y, Jia L, Wang F, Zhang LJ, Lu GM (2016) Abnormal Amygdala Resting-State Functional Connectivity in Irritable Bowel Syndrome. AJNR Am J Neuroradiol 37(6): 1139-1145. https://doi.org/10.3174/ajnr.A4655
- Azarfarin M, Moradikor N, Matin S, Dadkhah M (2024) Association Between Stress, Neuroinflammation, and Irritable Bowel Syndrome: The Positive Effects of Probiotic Therapy. Cell Biochem Funct 42(8): e70009. https://doi.org/10.1002/cbf.70009
- Chang L (2011) The role of stress on physiologic responses and clinical symptoms in irritable bowel syndrome. Gastroenterology 140(3): 761–765. https://doi.org/10.1053/j.gastro.2011.01.032
- Mackay JP, Bompolaki M, DeJoseph MR, Michaelson SD, Urban JH, Colmers WF (2019) NPY Y2 Receptors Reduce Tonic Action Potential-Independent GABAB Currents in the Basolateral Amygdala. J Neurosci 39(25): 4909–4930. https://doi.org/10.1523/JNEUROSCI.2226-18.2019
- Meis S, Endres T, Lessmann V (2020) Neurotrophin signalling in amygdala-dependent cued fear learning. Cell Tissue Res 382(1): 161–172. https://doi.org/10.1007/s00441-020-03260-3
- Berens S, Schaefert R, Baumeister D, Gauss A, Eich W, Tesarz J (2019) Does symptom activity explain psychological differences in patients with irritable bowel syndrome and inflammatory bowel disease? Results from a multi-center cross-sectional study. J Psychosom Res 126: 109836. https://doi.org/10.1016/j.jpsychores.2019.109836
- Geng Q, Zhang QE, Wang F, Zheng W, Ng CH, Ungvari GS, Wang G, Xiang YT (2018) Comparison of comorbid depression between irritable bowel syndrome and inflammatory bowel disease: A meta-analysis of comparative studies. J Affect Disord 237: 37–46. https://doi.org/10.1016/j.jad.2018.04.111
- Lyubashina OA, Sivachenko IB, Busygina II, Panteleev SS (2018) Colitis-induced alterations in response properties of visceral nociceptive neurons in the rat caudal medulla oblongata and their modulation by 5-HT3 receptor blockade. Brain Res Bull 142: 183–196. https://doi.org/10.1016/j.brainresbull.2018.07.013
- Lyubashina OA, Sivachenko IB, Mikhalkin AA (2022) Impaired visceral pain-related functions of the midbrain periaqueductal gray in rats with colitis. Brain Res Bull 182: 12–25. https://doi.org/10.1016/j.brainresbull.2022.02.002
- Sushkevich B, Sivachenko IB, Lyubashina OA (2023) Postcolitis Alterations in Nociceptive Properties of Neurons in the Rat Nucleus Raphe Magnus and Dorsal Raphe Nucleus. J Evol Biochem Physiol 59(4): 293–310. (In Russ.)
- Unal G, Pare JE, Smith Y, Pare D (2014) Cortical inputs innervate calbindin-immunoreactive interneurons of the rat basolateral amygdaloid complex. J Comp Neurol 522(8): 1915–1928. https://doi.org/10.1002/cne.23511
- Pinard CR, Mascagni F, McDonald AJ (2012) Medial prefrontal cortical innervation of the intercalated nuclear region of the amygdala. Neuroscience 205: 112–124. https://doi.org/10.1016/j.neuroscience.2011.12.036
- Strobel C, Marek R, Gooch HM, Sullivan RKP, Sah P (2015) Prefrontal and Auditory Input to Intercalated Neurons of the Amygdala. Cell Rep 10(9): 1435–1442. https://doi.org/10.1016/j.celrep.2015.02.008
- Bienvenu TC, Busti D, Micklem BR, Mansouri M, Magill PJ, Ferraguti F, Capogna M (2015) Large intercalated neurons of amygdala relay noxious sensory information. J Neurosci 35(5): 2044–2057. https://doi.org/10.1523/JNEUROSCI.1323-14.2015
- Chen YH, Wu JL, Hu NY, Zhuang JP, Li WP, Zhang SR, Li XW, Yang JM, Gao TM (2021) Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J Clin Invest 131(14): e145692. https://doi.org/10.1172/JCI145692
Supplementary files


