Maturation of neonatal reflexes and behavioral features in 5xFAD mice, a model of Alzheimer’s disease
- Авторлар: Rozhkova I.N.1, Brusentsev E.Y.1, Rakhmanova T.A.1,2, Kozeneva V.S.1,2, Khotskin N.V.1, Amstislavsky S.Y.1
-
Мекемелер:
- Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
- Шығарылым: Том 111, № 10 (2025)
- Беттер: 1581-1600
- Бөлім: EXPERIMENTAL ARTICLES
- URL: https://journals.rcsi.science/0869-8139/article/view/352700
- DOI: https://doi.org/10.7868/S2658655X25100016
- ID: 352700
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
I. Rozhkova
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of SciencesNovosibirsk, Russia
E. Brusentsev
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of SciencesNovosibirsk, Russia
T. Rakhmanova
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences; Novosibirsk State UniversityNovosibirsk, Russia; Novosibirsk, Russia
V. Kozeneva
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences; Novosibirsk State UniversityNovosibirsk, Russia; Novosibirsk, Russia
N. Khotskin
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of SciencesNovosibirsk, Russia
S. Amstislavsky
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences
Email: amstis@yandex.ru
Novosibirsk, Russia
Әдебиет тізімі
- Bermejo-Pareja F, Del Ser T (2024) Controversial past, splendid present, unpredictable future: a brief review of Alzheimer disease history. J Clin Med 13: 536. https://doi.org/10.3390/jcm13020536
- Nasb M, Tao W, Chen N (2024) Alzheimer’s disease puzzle: Delving into pathogenesis hypotheses. Aging Dis 15: 43–73. https://doi.org/10.14336/AD.2023.0608
- Perneczky R, Dom G, Chan A, Falkai P, Bassetti C (2024) Anti-amyloid antibody treatments for Alzheimer’s disease. Eur J Neurol 31: e16049. https://doi.org/10.1111/ene.16049
- Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 297: 353–356. https://doi.org/10.1126/science.1072994
- Long JM, Holtzman DM (2019) Alzheimer disease: An update on pathobiology and treatment strategies. Cell 179: 312–339. https://doi.org/10.1016/j.cell.2019.09.001
- Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O (2012) Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5xFAD mouse model of Alzheimer’s disease. Neurobiol Aging 33: 196.e29-40. https://doi.org/10.1016/j.neurobiolaging.2010.05.027
- Richard BC, Kurdakova A, Baches S, Bayer TA, Weggen S, Wirths O (2015) Gene dosage dependent aggravation of the neurological phenotype in the 5xfad mouse model of Alzheimer’s disease. J Alzheimers Dis 45: 1223–1236. https://doi.org/10.3233/JAD-143120
- Gu L, Wu D, Tang X, Qi X, Li X, Bai F, Chen X, Ren Q, Zhang Z (2018) Myelin changes at the early stage of 5xFAD mice. Brain Res Bull 137: 285–293. https://doi.org/10.1016/j.brainresbull.2017.12.013
- Uras I, Karayel-Basar M, Sahin B, Baykal AT (2023) Detection of early proteomic alterations in 5xFAD Alzheimer’s disease neonatal mouse model via MALDI-MSI. Alzheimers Dement 19: 4572–4589. https://doi.org/10.1002/alz.13008 https://www.alzforum.org/research-models/5xfad-c57bl6
- Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26: 10129–10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006
- Oblak AL, Lin PB, Kotredes KP, Pandey RS, Garceau D, Williams HM, Uyar A, O’Rourke R, O’Rourke S, Ingraham C, Bednarczyk D, Belanger M, Cope ZA, Little GJ, Williams SG, Ash C, Bleckert A, Ragan T, Logsdon BA, Mangravite LM, Sukoff Rizzo SJ, Territo PR, Carter GW, Howell GR, Sasner M, Lamb BT (2021) Comprehensive evaluation of the 5xFAD mouse model for preclinical testing applications: A MODEL-AD study. Front Aging Neurosci 13: 713726. https://doi.org/10.3389/fnagi.2021.713726
- Wu D, Tang X, Gu LH, Li XL, Qi XY, Bai F, Chen XC, Wang JZ, Ren QG, Zhang ZJ (2018) LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in the early stage of 5XFAD mice. CNS Neurosci Ther 24: 381–393. https://doi.org/10.1111/cns.12809
- Bhuiyan P, Zhang W, Liang G, Jiang B, Vera R, Chae R, Kim K, Louis LS, Wang Y, Liu J, Chuang DM, Wei H (2025) Intranasal delivery of lithium salt suppresses inflammatory pyroptosis in the brain and ameliorates memory loss and depression-like behavior in 5xFAD mice. J Neuroimmune Pharmacol 20: 26. https://doi.org/10.1007/s11481-025-10185-7
- Holmdahl R, Malissen B (2012) The need for littermate controls. Eur J Immunol 42: 45–47. https://doi.org/10.1002/eji.201142048
- Wu D, Dean J (2020) Maternal factors regulating preimplantation development in mice. Curr Top Dev Biol 140: 317–340. https://doi.org/10.1016/bs.ctdb.2019.10.006
- Mazi AR, Arzuman AS, Gurel B, Sahin B, Tuzuner MB, Ozansoy M, Baykal AT (2018) Neonatal neurodegeneration in alzheimer’s disease transgenic mouse model. J Alzheimers Dis Rep 2: 79–91. https://doi.org/10.3233/ADR-170049
- Chen H, Fang Z, Lin SL, Schachner M (2025) L1CAM mimetic compound duloxetine improves cognitive impairment in 5xFAD mice and protects Aβ1-42-damaged HT22 cells. Eur J Pharmacol 997: 177476. https://doi.org/10.1016/j.ejphar.2025.177476
- Fox WM (1965) Reflex-ontogeny and behavioural development of the mouse. Anim Behav 13: 234–241. https://doi.org/10.1016/0003-3472(65)90041-2
- Lalonde R, Kim HD, Maxwell JA, Fukuchi K (2005) Exploratory activity and spatial learning in 12-month-old APP(695)SWE/co+PS1/DeltaE9 mice with amyloid plaques. Neurosci Lett 390: 87–92. https://doi.org/10.1016/j.neulet.2005.08.028
- Feather-Schussler DN, Ferguson TS (2016) A battery of motor tests in a neonatal mouse model of cerebral palsy. J Vis Exp: 53569. https://doi.org/10.3791/53569
- Lalonde R, Filali M, Strazielle C (2022) SHIRPA as a neurological screening battery in mice. Curr Protoc 2: e554. https://doi.org/10.1002/cpz1.554
- Okotrub SV, Rozhkova IN, Brusentsev EY, Gornostaeva AM, Ragaeva DS, Chuyko EA, Amstislavskyet SY (2022) Effects of prenatal exposure to exogenous gonadotropin on brain development in mice. Neurosci Behav Physiol 52: 1073–1081. https://doi.org/10.1007/s11055-022-01335-y
- Heyser CJ (2004) Assessment of developmental milestones in rodents. Current protocols in neuroscience. Chapter 8: Unit 8.18. https://doi.org/10.1002/0471142301.ns0818s25
- Roubertoux PL, Ghata A, Carlier M (2018) Measuring preweaning sensorial and motor development in the mouse. Curr Protoc Mouse Biol 1: 54–78. https://doi.org/10.1002/cpmo.41
- Rochefort NL, Garaschuk O, Milos RI, Narushima M, Marandi N, Pichler B, Kovalchuk Y, Konnerth A (2009) Sparsification of neuronal activity in the visual cortex at eye-opening. Proc Natl Acad Sci U S A 106: 15049–15054. https://doi.org/10.1073/pnas.0907660106
- Рожкова ИН, Окотруб СВ, Брусенцев ЕЮ, Рахманова ТА, Лебедева ДА, Козенева ВС, Хоцкин НВ, Амстиславский СЯ (2023) Анализ поведения и плотности нейронов в головном мозге мышей B6.Cg-Tg(Prnp-SNCA*A53T)23Mkle/J – модели болезни Паркинсона. Рос физиол журн им ИМ Сеченова 109: 1199–1216. [Rozhkova IN, Okotrub SV, Brusentsev EY, Rakhmanova TA, Lebedeva DA, Kozeneva VS, Khotskin NV, Amstislavsky SY (2023) Analysis of behavior and brain neuronal density in B6.Cg-Tg(Prnp-SNCA*A53T)23Mkle/J mice, a Parkinson’s disease model. Russ J Physiol 109: 1199–1216. (In Russ)]. https://doi.org/10.31857/S0869813923090091
- Varkonyi D, Torok B, Sipos E, Fazekas CL, Banrevi K, Correia P, Chaves T, Farkas S, Szabo A, Martinez-Bellver S, Hangya B, Zelena D (2022) Investigation of anxiety- and depressive-like symptoms in 4- and 8-month-old male triple transgenic mouse models of Alzheimer’s disease. Int J Mol Sci 23: 10816. https://doi.org/10.3390/ijms231810816
- Wang Y, Wu LH, Hou F, Wang ZJ, Wu MN, Holscher C, Cai HY (2024) Mitochondrial calcium uniporter knockdown in hippocampal neurons alleviates anxious and depressive behavior in the 3xTg Alzheimer’s disease mouse model. Brain Res 1840: 149060. https://doi.org/10.1016/j.brainres.2024.149060
- O’Leary TP, Mantolino HM, Stover KR, Brown RE (2020) Age-related deterioration of motor function in male and female 5xFAD mice from 3 to 16 months of age. Genes Brain Behav 19: e12538. https://doi.org/10.1111/gbb.12538
- Cheverud JM, Routman EJ, Duarte FA, van Swinderen B, Cothran K, Perel C (1996) Quantitative trait loci for murine growth. Genetics 142: 1305–1319. https://doi.org/10.1093/genetics/142.4.1305
- Wright KM, Deighan AG, Di Francesco A, Freund A, Jojic V, Churchill GA, Raj A (2022) Age and diet shape the genetic architecture of body weight in diversity outbred mice. Elife 11: e64329. https://doi.org/10.7554/eLife.64329
- Forner S, Kawauchi S, Balderrama-Gutierrez G, Kramar EA, Matheos DP, Phan J, Javonillo DI, Tran KM, Hingco E, da Cunha C, Rezaie N, Alcantara JA, Baglietto-Vargas D, Jansen C, Neumann J, Wood MA, MacGregor GR, Mortazavi A, Tenner AJ, LaFerla FM, Green KN (2021) Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer’s disease. Sci Data 8: 270. https://doi.org/10.1038/s41597-021-01054-y
- Kameno K, Hasegawa Y, Hayashi K, Takemoto Y, Uchikawa H, Mukasa A, Kim-Mitsuyama S (2022) Loss of body weight in old 5xFAD mice and the alteration of gut microbiota composition. Exp Gerontol 166: 111885. \https://doi.org/10.1016/j.exger.2022.111885
- Tremml P, Lipp HP, Muller U, Ricceri L, Wolfer DP (1998) Neurobehavioral development, adult open field exploration and swimming navigation learning in mice with a modified beta-amiloid precursor protein gene. Behav Brain Res 95: 65–76. https://doi.org/10.1016/s0166-4328(97)00211-8
- Chen Y, Li Y, Fan Y, Chen S, Chen L, Chen Y, Chen Y (2024) Gut microbiota-driven metabolic alterations reveal gut-brain communication in Alzheimer’s disease model mice. Gut Microbes 16: 2302310. https://doi.org/10.1080/19490976.2024.2302310
- Brandscheid C, Schuck F, Reinhardt S, Schafer KH, Pietrzik CU, Grimm M, Hartmann T, Schwiertz A, Endres K (2017) Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimers Dis 56: 775–788. https://doi.org/10.3233/JAD-160926
- Campbell KJ, Jiang P, Olker C, Lin X, Kim SY, Lee CJ, Song EJ, Turek FW, Vitaterna MH (2024) The impacts of sex and the 5xFAD model of Alzheimer’s disease on the sleep and spatial learning responses to feeding time. Front Neurol 15: 1430989. https://doi.org/10.3389/fneur.2024.1430989
- Botto R, Callai N, Cermelli A, Causarano L, Rainero I (2022) Anxiety and depression in Alzheimer’s disease: a systematic review of pathogenetic mechanisms and relation to cognitive decline. Neurol Sci 43: 4107–4124. https://doi.org/10.1007/s10072-022-06068-x
- Huang YY, Gan YH, Yang L, Cheng W, Yu JT (2024) Depression in Alzheimer’s disease: epidemiology, mechanisms, and treatment. Biol Psychiatry 95: 992–1005. https://doi.org/10.1016/j.biopsych.2023.10.008
- Khan KM, Balasubramanian N, Gaudencio G, Wang R, Selvakumar GP, Kolling L, Pierson S, Tadinada SM, Abel T, Hefti M, Marcinkiewcz CA (2023) Human tau-overexpressing mice recapitulate brainstem involvement and neuropsychiatric features of early Alzheimer’s disease. Acta Neuropathol Commun 11: 57. https://doi.org/10.1186/s40478-023-01546-5
- Primo MJ, Fonseca-Rodrigues D, Almeida A, Teixeira PM, Pinto-Ribeiro F (2023) Sucrose preference test:A systematic review of protocols for the assessment of anhedonia in rodents. Eur Neuropsychopharmacol 77: 80–92. https://doi.org/10.1016/j.euroneuro.2023.08.496
- Faure A, Verret L, Bozon B, El Tannir El Tayara N, Ly M, Kober F, Dhenain M, Rampon C, Delatour B (2011) Impaired neurogenesis, neuronal loss, and brain functional deficits in the APPxPS1-Ki mouse model of Alzheimer’s disease. Neurobiol Aging 32: 407–418. https://doi.org/10.1016/j.neurobiolaging.2009.03.009
- Lalonde R, Qian S, Strazielle C (2003) Transgenic mice expressing the PS1-A246E mutation: Effects on spatial learning, exploration, anxiety, and motor coordination. Behav Brain Res 138: 71–79. https://doi.org/10.1016/s0166-4328(02)00230-9
- Lalonde R, Dumont M, Staufenbiel M, Sturchler-Pierrat C, Strazielle C (2002) Spatial learning, exploration, anxiety, and motor coordination in female APP23 transgenic mice with the Swedish mutation. Brain Res 956: 36–44. https://doi.org/10.1016/s0006-8993(02)03476-5
- Son Y, Kim JS, Jeong YJ, Jeong YK, Kwon JH, Choi HD, Pack JK, Kim N, Lee YS, Lee HJ (2018) Long-term RF exposure on behavior and cerebral glucose metabolism in 5xFAD mice. Neurosci Lett 666: 64–69. https://doi.org/10.1016/j.neulet.2017.12.042
- Lovasic L, Bauschke H, Janus C (2005) Working memory impairment in a transgenic amyloid precursor protein TgCRND8 mouse model of Alzheimer’s disease. Genes Brain Behav 4: 197–208. https://doi.org/10.1111/j.1601-183X.2004.00104.x
- Duyckaerts C, Potier MC, Delatour B (2008) Alzheimer disease models and human neuropathology: Similarities and differences. Acta Neuropathol 115: 5–38. https://doi.org/10.1007/s00401-007-0312-8
- Wirths O, Bayer TA (2008) Motor impairment in Alzheimer’s disease and transgenic Alzheimer’s disease mouse models. Genes Brain Behav 7 Suppl 1: 1–5. https://doi.org/10.1111/j.1601-183X.2007.00373.x
- Ohno M (2009) Failures to reconsolidate memory in a mouse model of Alzheimer’s disease. Neurobiol Learn Mem 92: 455–459. https://doi.org/10.1016/j.nlm.2009.05.001
- Devi L, Ohno M (2010) Genetic reductions of beta-site amyloid precursor protein-cleaving enzyme 1 and amyloid-beta ameliorate impairment of conditioned taste aversion memory in 5XFAD Alzheimer’s disease model mice. Eur J Neurosci 31: 110–118. https://doi.org/10.1111/j.1460-9568.2009.07031.x
- Bermejo-Pareja F, Del Ser T (2024) Controversial past, splendid present, unpredictable future: A brief review of Alzheimer disease history. J Clin Med 13: 536. https://doi.org/10.3390/jcm13020536
- Hari I, Adeyemi OF, Gowland P, Bowtell R, Mougin O, Vesey P, Shah J, Mukaetova-Ladinska EB, Hosseini AA (2024) Memory impairment in Amyloidβ-status Alzheimer’s disease is associated with a reduction in CA1 and dentate gyrus volume: In vivo MRI at 7T. Neuroimage 292: 120607. https://doi.org/10.1016/j.neuroimage.2024.120607
- Aggarwal NT, Mielke MM (2023) Sex differences in Alzheimer’s disease. Neurol Clin 41: 343–358. https://doi.org/10.1016/j.ncl.2023.01.001
- Rishabh, Rohilla M, Bansal S, Bansal N, Chauhan S, Sharma S, Goyal N, Gupta S (2024) Estrogen signalling and Alzheimer’s disease: Decoding molecular mechanisms for therapeutic breakthrough. Eur J Neurosci 60: 3466–3490. https://doi.org/10.1111/ejn.16360
- Wang X, Feng S, Deng Q, Wu C, Duan R, Yang L (2025) The role of estrogen in Alzheimer’s disease pathogenesis and therapeutic potential in women. Mol Cell Biochem 480: 1983–1998. https://doi.org/10.1007/s11010-024-05071-4
- Holland J, Bandelow S, Hogervorst E (2011) Testosterone levels and cognition in elderly men: A review. Maturitas 69: 322–337. https://doi.org/10.1016/j.maturitas.2011.05.012
- Bianchi VE (2022) Impact of testosterone on Alzheimer’s disease. World J Mens Health 40: 243–256. https://doi.org/10.5534/wjmh.210175
- Barron AM, Pike CJ (2012) Sex hormones, aging, and Alzheimer’s disease. Front Biosci (Elite Ed) 4: 976–997. https://doi.org/10.2741/E434
- Pike CJ (2017) Sex and the development of Alzheimer’s disease. J Neurosci Res 95: 671–680. https://doi.org/10.1002/jnr.23827
Қосымша файлдар


