Maturation of neonatal reflexes and behavioral features in 5xFAD mice, a model of Alzheimer’s disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Alzheimer’s disease (AD) is a progressive age-related neurodegenerative pathology leading to dementia. Genetic models of AD in mice have been established aimed to elucidate the mechanisms of this pathology and to find possible ways of its correction. Transgenic mice of the 5xFAD strain with two human transgenes App and Psen1 and five mutations represent the popular model for investigating AD. The aim of this work was to evaluate the maturation of neonatal reflexes and the body mass increase during early postnatal ontogenesis in 5xFAD mice, as well as behavioral features of these mice at the age of three months. Wild type (WT) mice of the same sex and age from the same litters were used as controls. The results obtained indicate that 5xFAD mice do not differ from their WT sibs in body mass increase and the rate of neonatal reflexes maturation during weaning period. At the age of three months, 5xFAD males showed sex differences in behavior: males exhibited lower overall locomotor activity than females and showed signs of beginning to develop depressive-like behavior. Lower anxiety level in males as well as higher exploratory activity in females were revealed in the three-mo.-old 5xFAD mice compared to WT siblings of the same sex. As a result of this study, behavioral features of young 5xFAD mice were characterized at the age of three months. The maturation of neonatal reflexes during the weaning period was studied for the first time in this transgenic model of AD.

About the authors

I. N. Rozhkova

Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

E. Yu. Brusentsev

Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

T. A. Rakhmanova

Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Novosibirsk, Russia; Novosibirsk, Russia

V. S. Kozeneva

Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Novosibirsk, Russia; Novosibirsk, Russia

N. V. Khotskin

Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

S. Ya. Amstislavsky

Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences

Email: amstis@yandex.ru
Novosibirsk, Russia

References

  1. Bermejo-Pareja F, Del Ser T (2024) Controversial past, splendid present, unpredictable future: a brief review of Alzheimer disease history. J Clin Med 13: 536. https://doi.org/10.3390/jcm13020536
  2. Nasb M, Tao W, Chen N (2024) Alzheimer’s disease puzzle: Delving into pathogenesis hypotheses. Aging Dis 15: 43–73. https://doi.org/10.14336/AD.2023.0608
  3. Perneczky R, Dom G, Chan A, Falkai P, Bassetti C (2024) Anti-amyloid antibody treatments for Alzheimer’s disease. Eur J Neurol 31: e16049. https://doi.org/10.1111/ene.16049
  4. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 297: 353–356. https://doi.org/10.1126/science.1072994
  5. Long JM, Holtzman DM (2019) Alzheimer disease: An update on pathobiology and treatment strategies. Cell 179: 312–339. https://doi.org/10.1016/j.cell.2019.09.001
  6. Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O (2012) Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5xFAD mouse model of Alzheimer’s disease. Neurobiol Aging 33: 196.e29-40. https://doi.org/10.1016/j.neurobiolaging.2010.05.027
  7. Richard BC, Kurdakova A, Baches S, Bayer TA, Weggen S, Wirths O (2015) Gene dosage dependent aggravation of the neurological phenotype in the 5xfad mouse model of Alzheimer’s disease. J Alzheimers Dis 45: 1223–1236. https://doi.org/10.3233/JAD-143120
  8. Gu L, Wu D, Tang X, Qi X, Li X, Bai F, Chen X, Ren Q, Zhang Z (2018) Myelin changes at the early stage of 5xFAD mice. Brain Res Bull 137: 285–293. https://doi.org/10.1016/j.brainresbull.2017.12.013
  9. Uras I, Karayel-Basar M, Sahin B, Baykal AT (2023) Detection of early proteomic alterations in 5xFAD Alzheimer’s disease neonatal mouse model via MALDI-MSI. Alzheimers Dement 19: 4572–4589. https://doi.org/10.1002/alz.13008 https://www.alzforum.org/research-models/5xfad-c57bl6
  10. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26: 10129–10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006
  11. Oblak AL, Lin PB, Kotredes KP, Pandey RS, Garceau D, Williams HM, Uyar A, O’Rourke R, O’Rourke S, Ingraham C, Bednarczyk D, Belanger M, Cope ZA, Little GJ, Williams SG, Ash C, Bleckert A, Ragan T, Logsdon BA, Mangravite LM, Sukoff Rizzo SJ, Territo PR, Carter GW, Howell GR, Sasner M, Lamb BT (2021) Comprehensive evaluation of the 5xFAD mouse model for preclinical testing applications: A MODEL-AD study. Front Aging Neurosci 13: 713726. https://doi.org/10.3389/fnagi.2021.713726
  12. Wu D, Tang X, Gu LH, Li XL, Qi XY, Bai F, Chen XC, Wang JZ, Ren QG, Zhang ZJ (2018) LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in the early stage of 5XFAD mice. CNS Neurosci Ther 24: 381–393. https://doi.org/10.1111/cns.12809
  13. Bhuiyan P, Zhang W, Liang G, Jiang B, Vera R, Chae R, Kim K, Louis LS, Wang Y, Liu J, Chuang DM, Wei H (2025) Intranasal delivery of lithium salt suppresses inflammatory pyroptosis in the brain and ameliorates memory loss and depression-like behavior in 5xFAD mice. J Neuroimmune Pharmacol 20: 26. https://doi.org/10.1007/s11481-025-10185-7
  14. Holmdahl R, Malissen B (2012) The need for littermate controls. Eur J Immunol 42: 45–47. https://doi.org/10.1002/eji.201142048
  15. Wu D, Dean J (2020) Maternal factors regulating preimplantation development in mice. Curr Top Dev Biol 140: 317–340. https://doi.org/10.1016/bs.ctdb.2019.10.006
  16. Mazi AR, Arzuman AS, Gurel B, Sahin B, Tuzuner MB, Ozansoy M, Baykal AT (2018) Neonatal neurodegeneration in alzheimer’s disease transgenic mouse model. J Alzheimers Dis Rep 2: 79–91. https://doi.org/10.3233/ADR-170049
  17. Chen H, Fang Z, Lin SL, Schachner M (2025) L1CAM mimetic compound duloxetine improves cognitive impairment in 5xFAD mice and protects Aβ1-42-damaged HT22 cells. Eur J Pharmacol 997: 177476. https://doi.org/10.1016/j.ejphar.2025.177476
  18. Fox WM (1965) Reflex-ontogeny and behavioural development of the mouse. Anim Behav 13: 234–241. https://doi.org/10.1016/0003-3472(65)90041-2
  19. Lalonde R, Kim HD, Maxwell JA, Fukuchi K (2005) Exploratory activity and spatial learning in 12-month-old APP(695)SWE/co+PS1/DeltaE9 mice with amyloid plaques. Neurosci Lett 390: 87–92. https://doi.org/10.1016/j.neulet.2005.08.028
  20. Feather-Schussler DN, Ferguson TS (2016) A battery of motor tests in a neonatal mouse model of cerebral palsy. J Vis Exp: 53569. https://doi.org/10.3791/53569
  21. Lalonde R, Filali M, Strazielle C (2022) SHIRPA as a neurological screening battery in mice. Curr Protoc 2: e554. https://doi.org/10.1002/cpz1.554
  22. Okotrub SV, Rozhkova IN, Brusentsev EY, Gornostaeva AM, Ragaeva DS, Chuyko EA, Amstislavskyet SY (2022) Effects of prenatal exposure to exogenous gonadotropin on brain development in mice. Neurosci Behav Physiol 52: 1073–1081. https://doi.org/10.1007/s11055-022-01335-y
  23. Heyser CJ (2004) Assessment of developmental milestones in rodents. Current protocols in neuroscience. Chapter 8: Unit 8.18. https://doi.org/10.1002/0471142301.ns0818s25
  24. Roubertoux PL, Ghata A, Carlier M (2018) Measuring preweaning sensorial and motor development in the mouse. Curr Protoc Mouse Biol 1: 54–78. https://doi.org/10.1002/cpmo.41
  25. Rochefort NL, Garaschuk O, Milos RI, Narushima M, Marandi N, Pichler B, Kovalchuk Y, Konnerth A (2009) Sparsification of neuronal activity in the visual cortex at eye-opening. Proc Natl Acad Sci U S A 106: 15049–15054. https://doi.org/10.1073/pnas.0907660106
  26. Рожкова ИН, Окотруб СВ, Брусенцев ЕЮ, Рахманова ТА, Лебедева ДА, Козенева ВС, Хоцкин НВ, Амстиславский СЯ (2023) Анализ поведения и плотности нейронов в головном мозге мышей B6.Cg-Tg(Prnp-SNCA*A53T)23Mkle/J – модели болезни Паркинсона. Рос физиол журн им ИМ Сеченова 109: 1199–1216. [Rozhkova IN, Okotrub SV, Brusentsev EY, Rakhmanova TA, Lebedeva DA, Kozeneva VS, Khotskin NV, Amstislavsky SY (2023) Analysis of behavior and brain neuronal density in B6.Cg-Tg(Prnp-SNCA*A53T)23Mkle/J mice, a Parkinson’s disease model. Russ J Physiol 109: 1199–1216. (In Russ)]. https://doi.org/10.31857/S0869813923090091
  27. Varkonyi D, Torok B, Sipos E, Fazekas CL, Banrevi K, Correia P, Chaves T, Farkas S, Szabo A, Martinez-Bellver S, Hangya B, Zelena D (2022) Investigation of anxiety- and depressive-like symptoms in 4- and 8-month-old male triple transgenic mouse models of Alzheimer’s disease. Int J Mol Sci 23: 10816. https://doi.org/10.3390/ijms231810816
  28. Wang Y, Wu LH, Hou F, Wang ZJ, Wu MN, Holscher C, Cai HY (2024) Mitochondrial calcium uniporter knockdown in hippocampal neurons alleviates anxious and depressive behavior in the 3xTg Alzheimer’s disease mouse model. Brain Res 1840: 149060. https://doi.org/10.1016/j.brainres.2024.149060
  29. O’Leary TP, Mantolino HM, Stover KR, Brown RE (2020) Age-related deterioration of motor function in male and female 5xFAD mice from 3 to 16 months of age. Genes Brain Behav 19: e12538. https://doi.org/10.1111/gbb.12538
  30. Cheverud JM, Routman EJ, Duarte FA, van Swinderen B, Cothran K, Perel C (1996) Quantitative trait loci for murine growth. Genetics 142: 1305–1319. https://doi.org/10.1093/genetics/142.4.1305
  31. Wright KM, Deighan AG, Di Francesco A, Freund A, Jojic V, Churchill GA, Raj A (2022) Age and diet shape the genetic architecture of body weight in diversity outbred mice. Elife 11: e64329. https://doi.org/10.7554/eLife.64329
  32. Forner S, Kawauchi S, Balderrama-Gutierrez G, Kramar EA, Matheos DP, Phan J, Javonillo DI, Tran KM, Hingco E, da Cunha C, Rezaie N, Alcantara JA, Baglietto-Vargas D, Jansen C, Neumann J, Wood MA, MacGregor GR, Mortazavi A, Tenner AJ, LaFerla FM, Green KN (2021) Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer’s disease. Sci Data 8: 270. https://doi.org/10.1038/s41597-021-01054-y
  33. Kameno K, Hasegawa Y, Hayashi K, Takemoto Y, Uchikawa H, Mukasa A, Kim-Mitsuyama S (2022) Loss of body weight in old 5xFAD mice and the alteration of gut microbiota composition. Exp Gerontol 166: 111885. https://doi.org/10.1016/j.exger.2022.111885
  34. Tremml P, Lipp HP, Muller U, Ricceri L, Wolfer DP (1998) Neurobehavioral development, adult open field exploration and swimming navigation learning in mice with a modified beta-amiloid precursor protein gene. Behav Brain Res 95: 65–76. https://doi.org/10.1016/s0166-4328(97)00211-8
  35. Chen Y, Li Y, Fan Y, Chen S, Chen L, Chen Y, Chen Y (2024) Gut microbiota-driven metabolic alterations reveal gut-brain communication in Alzheimer’s disease model mice. Gut Microbes 16: 2302310. https://doi.org/10.1080/19490976.2024.2302310
  36. Brandscheid C, Schuck F, Reinhardt S, Schafer KH, Pietrzik CU, Grimm M, Hartmann T, Schwiertz A, Endres K (2017) Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimers Dis 56: 775–788. https://doi.org/10.3233/JAD-160926
  37. Campbell KJ, Jiang P, Olker C, Lin X, Kim SY, Lee CJ, Song EJ, Turek FW, Vitaterna MH (2024) The impacts of sex and the 5xFAD model of Alzheimer’s disease on the sleep and spatial learning responses to feeding time. Front Neurol 15: 1430989. https://doi.org/10.3389/fneur.2024.1430989
  38. Botto R, Callai N, Cermelli A, Causarano L, Rainero I (2022) Anxiety and depression in Alzheimer’s disease: a systematic review of pathogenetic mechanisms and relation to cognitive decline. Neurol Sci 43: 4107–4124. https://doi.org/10.1007/s10072-022-06068-x
  39. Huang YY, Gan YH, Yang L, Cheng W, Yu JT (2024) Depression in Alzheimer’s disease: epidemiology, mechanisms, and treatment. Biol Psychiatry 95: 992–1005. https://doi.org/10.1016/j.biopsych.2023.10.008
  40. Khan KM, Balasubramanian N, Gaudencio G, Wang R, Selvakumar GP, Kolling L, Pierson S, Tadinada SM, Abel T, Hefti M, Marcinkiewcz CA (2023) Human tau-overexpressing mice recapitulate brainstem involvement and neuropsychiatric features of early Alzheimer’s disease. Acta Neuropathol Commun 11: 57. https://doi.org/10.1186/s40478-023-01546-5
  41. Primo MJ, Fonseca-Rodrigues D, Almeida A, Teixeira PM, Pinto-Ribeiro F (2023) Sucrose preference test:A systematic review of protocols for the assessment of anhedonia in rodents. Eur Neuropsychopharmacol 77: 80–92. https://doi.org/10.1016/j.euroneuro.2023.08.496
  42. Faure A, Verret L, Bozon B, El Tannir El Tayara N, Ly M, Kober F, Dhenain M, Rampon C, Delatour B (2011) Impaired neurogenesis, neuronal loss, and brain functional deficits in the APPxPS1-Ki mouse model of Alzheimer’s disease. Neurobiol Aging 32: 407–418. https://doi.org/10.1016/j.neurobiolaging.2009.03.009
  43. Lalonde R, Qian S, Strazielle C (2003) Transgenic mice expressing the PS1-A246E mutation: Effects on spatial learning, exploration, anxiety, and motor coordination. Behav Brain Res 138: 71–79. https://doi.org/10.1016/s0166-4328(02)00230-9
  44. Lalonde R, Dumont M, Staufenbiel M, Sturchler-Pierrat C, Strazielle C (2002) Spatial learning, exploration, anxiety, and motor coordination in female APP23 transgenic mice with the Swedish mutation. Brain Res 956: 36–44. https://doi.org/10.1016/s0006-8993(02)03476-5
  45. Son Y, Kim JS, Jeong YJ, Jeong YK, Kwon JH, Choi HD, Pack JK, Kim N, Lee YS, Lee HJ (2018) Long-term RF exposure on behavior and cerebral glucose metabolism in 5xFAD mice. Neurosci Lett 666: 64–69. https://doi.org/10.1016/j.neulet.2017.12.042
  46. Lovasic L, Bauschke H, Janus C (2005) Working memory impairment in a transgenic amyloid precursor protein TgCRND8 mouse model of Alzheimer’s disease. Genes Brain Behav 4: 197–208. https://doi.org/10.1111/j.1601-183X.2004.00104.x
  47. Duyckaerts C, Potier MC, Delatour B (2008) Alzheimer disease models and human neuropathology: Similarities and differences. Acta Neuropathol 115: 5–38. https://doi.org/10.1007/s00401-007-0312-8
  48. Wirths O, Bayer TA (2008) Motor impairment in Alzheimer’s disease and transgenic Alzheimer’s disease mouse models. Genes Brain Behav 7 Suppl 1: 1–5. https://doi.org/10.1111/j.1601-183X.2007.00373.x
  49. Ohno M (2009) Failures to reconsolidate memory in a mouse model of Alzheimer’s disease. Neurobiol Learn Mem 92: 455–459. https://doi.org/10.1016/j.nlm.2009.05.001
  50. Devi L, Ohno M (2010) Genetic reductions of beta-site amyloid precursor protein-cleaving enzyme 1 and amyloid-beta ameliorate impairment of conditioned taste aversion memory in 5XFAD Alzheimer’s disease model mice. Eur J Neurosci 31: 110–118. https://doi.org/10.1111/j.1460-9568.2009.07031.x
  51. Bermejo-Pareja F, Del Ser T (2024) Controversial past, splendid present, unpredictable future: A brief review of Alzheimer disease history. J Clin Med 13: 536. https://doi.org/10.3390/jcm13020536
  52. Hari I, Adeyemi OF, Gowland P, Bowtell R, Mougin O, Vesey P, Shah J, Mukaetova-Ladinska EB, Hosseini AA (2024) Memory impairment in Amyloidβ-status Alzheimer’s disease is associated with a reduction in CA1 and dentate gyrus volume: In vivo MRI at 7T. Neuroimage 292: 120607. https://doi.org/10.1016/j.neuroimage.2024.120607
  53. Aggarwal NT, Mielke MM (2023) Sex differences in Alzheimer’s disease. Neurol Clin 41: 343–358. https://doi.org/10.1016/j.ncl.2023.01.001
  54. Rishabh, Rohilla M, Bansal S, Bansal N, Chauhan S, Sharma S, Goyal N, Gupta S (2024) Estrogen signalling and Alzheimer’s disease: Decoding molecular mechanisms for therapeutic breakthrough. Eur J Neurosci 60: 3466–3490. https://doi.org/10.1111/ejn.16360
  55. Wang X, Feng S, Deng Q, Wu C, Duan R, Yang L (2025) The role of estrogen in Alzheimer’s disease pathogenesis and therapeutic potential in women. Mol Cell Biochem 480: 1983–1998. https://doi.org/10.1007/s11010-024-05071-4
  56. Holland J, Bandelow S, Hogervorst E (2011) Testosterone levels and cognition in elderly men: A review. Maturitas 69: 322–337. https://doi.org/10.1016/j.maturitas.2011.05.012
  57. Bianchi VE (2022) Impact of testosterone on Alzheimer’s disease. World J Mens Health 40: 243–256. https://doi.org/10.5534/wjmh.210175
  58. Barron AM, Pike CJ (2012) Sex hormones, aging, and Alzheimer’s disease. Front Biosci (Elite Ed) 4: 976–997. https://doi.org/10.2741/E434
  59. Pike CJ (2017) Sex and the development of Alzheimer’s disease. J Neurosci Res 95: 671–680. https://doi.org/10.1002/jnr.23827

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».