Pharmacoencephalographic Assessment of Antiphyschotic Agents’ Effect Dose-Dependency in Rats

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Pharmacoencephalography (pharmaco-EEG) is a prominent instrument for the pharmacological screening new psychoactive molecules. This experimental approach has not remained a vestige of neurobiological studies, and can be used successfully to complete today’s research objectives. The development and rise to universal use of machine learning techniques opens up novel prospects for the use of pharmaco-EEG data to solve the problems of classification and prognosis. We have previously shown that naïve Bayes classifier (NBC) combined with the principal component analysis (PCA) can be used to differentiate between antipsychotic and sedative drug effects as well as to distinguish among the antipsychotics’ effects. In the present study, we evaluated the possibility to employ this method to assess the dose-dependency of antipsychotic effects. The experiments were carried out in white outbred male rats with chronically implanted electrocorticographic electrodes. As the agents of interest, we chose two drugs with antipsychotic activity, chlorpromazine and promethazine, in three doses each (0.1, 1, 10 mg/kg and 0.5, 5 and 20 mg/kg, respectively). The training set, used as a reference to determine the pharmacological effects of the agents of interest, included the D2-dopamine receptor blocker haloperidol, M-cholinergic receptor blocker tropicamide, H1-histamine receptor blocker chloropyramine, the sedative dexmedetomidine, and the anxiolytic phenazepam. We have shown that the lowest chlorpromazine dose (0.1 mg/kg) can be characterized as antipsychotic with a marked histaminolytic effect, while the highest one (10 mg/kg) exhibits predominantly antipsychotic activity with a cataleptogenic effect. All the doses demonstrated anticholinergic activity, which increased with the dose. For promethazine, we observed a clear dose-dependent transition from antipsychotic action to cataleptogenic, alongside a notable antimuscarinic effect of all doses. None of promethazine doses showed any resemblance to chloropyramine, which probably indicates its anti-dopaminergic and antimuscarinic effects being able to mask its H1-antihistamine effect in the used dose range. In summary, our results demonstrate that NBC coupled with PCA can be used to determine the dose-dependency of antipsychotic agents’ effects based on their impact on electrocorticogram parameters. Further development of this method as well as expansion of psychotropic agent electropharmacogram library would allow for more precise prognosis of pharmacological activity of the agents of interest.

Sobre autores

Yu. Sysoev

Saint Petersburg State Chemical and Pharmaceutical University; Pavlov Institute of Physiology of the Russian Academy of Sciences; Institute of Translational Biomedicine, Saint Petersburg State University; Bechtereva Institute of the Human Brain; Sirius University

Autor responsável pela correspondência
Email: susoyev92@mail.ru
Russia, St. Petersburg; Russia, St. Petersburg; Russia, St. Petersburg; Russia, St. Petersburg; Russia, Sochi

D. Shits

Saint Petersburg State Chemical and Pharmaceutical University

Email: susoyev92@mail.ru
Russia, St. Petersburg

M. Puchik

Saint Petersburg State Chemical and Pharmaceutical University

Email: susoyev92@mail.ru
Russia, St. Petersburg

I. Knyazeva

Bechtereva Institute of the Human Brain

Email: susoyev92@mail.ru
Russia, St. Petersburg

M. Korelov

Bechtereva Institute of the Human Brain

Email: susoyev92@mail.ru
Russia, St. Petersburg

V. Prikhodko

Saint Petersburg State Chemical and Pharmaceutical University; Bechtereva Institute of the Human Brain

Email: susoyev92@mail.ru
Russia, St. Petersburg; Russia, St. Petersburg

I. Titovich

Saint Petersburg State Chemical and Pharmaceutical University

Email: susoyev92@mail.ru
Russia, St. Petersburg

N. Selizarova

Saint Petersburg State Chemical and Pharmaceutical University

Email: susoyev92@mail.ru
Russia, St. Petersburg

S. Okovityi

Saint Petersburg State Chemical and Pharmaceutical University; Bechtereva Institute of the Human Brain

Email: susoyev92@mail.ru
Russia, St. Petersburg; Russia, St. Petersburg

Bibliografia

  1. Lanzone J, Ricci L, Tombini M, Boscarino M, Mecarelli O, Pulitano P, Di Lazzaro V, Assenza G (2021) The effect of Perampanel on EEG spectral power and connectivity in patients with focal epilepsy. Clin Neurophysiol 132(9): 2176–2183. https://www.doi.org/10.1016/j.clinph.2021.05.026
  2. Hyun J, Baik MJ, Kang UG (2011) Effects of Psychotropic Drugs on Quantitative EEG among Patients with Schizophrenia-spectrum Disorders. Clin Psychopharmacol Neurosci 9(2): 78–85. https://www.doi.org/10.9758/cpn.2011.9.2.78
  3. Nordin C, Krijzer F (1996) Antidepressant and anxiolytic profiles of E-10-hydroxynortriptyline on electrocorticograms of rats. Neuropsychobiology 34(1): 44–48. https://www.doi.org/10.1159/000119290
  4. Dimpfel W (2007) Characterization of atypical antipsychotic drugs by a late decrease of striatal alpha1 spectral power in the electropharmacogram of freely moving rats. Br J Pharmacol 152(4): 538–548. https://www.doi.org/10.1038/sj.bjp.0707427
  5. Dimpfel W, Hoffmann JA (2010) Electropharmacograms of rasagiline, its metabolite aminoindan and selegiline in the freely moving rat. Neuropsychobiology 62(4): 213–220. https://www.doi.org/10.1159/000319947
  6. Sysoev YuI, Shits DD, Puchik MM, Prikhodko VA, Idiyatullin RD, Kotelnikova AA, Okovityi SV (2022) Use of Naïve Bayes Classifier to Assess the Effects of Antipsychotic Agents on Brain Electrical Activity Parameters in Rats. J Evol Biochem Physiol 58(4): 1130–1141. https://www.doi.org/10.1134/S0022093022040160
  7. Sysoev YuI, Prikhodko VA, Idiyatullin RD, Chernyakov RT, Karev VE, Okovityi SV (2022) A Method for Chronic Registration of Brain Cortical Electrical Activity in Rats. J Evol Bioch Physiol 58: 292–301. https://www.doi.org/10.31857/S0869813922020091
  8. Hansen IH, Agerskov C, Arvastson L, Bastlund JF, Sørensen HBD, Herrik KF (2019) Pharmacoelectroencephalographic responses in the rat differ between active and inactive locomotor states. Eur J Neurosci 50(2): 1948–1971. https://www.doi.org/10.1111/ejn.14373
  9. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156(2-3): 117–154. https://www.doi.org/10.1007/s002130100811
  10. Waku I, Magalhães MS, Alves CO, de Oliveira AR (2021) Haloperidol-induced catalepsy as an animal model for parkinsonism: A systematic review of experimental studies. Eur J Neurosci 53(11): 3743–3767. https://www.doi.org/10.1111/ejn.15222
  11. Gardner DM, Baldessarini RJ, Waraich P (2005) Modern antipsychotic drugs: a critical overview. CMAJ 172(13): 1703–1711. https://www.doi.org/10.1503/cmaj.1041064
  12. Bryant SM, Rhee JW, Thompson TM, Lu JJ, Aks SE (2009) Parenteral ophthalmic tropicamide or cyclopentolate protects rats from lethal organophosphate poisoning. Am J Ther 16(3): 231–234. https://www.doi.org/10.1097/MJT.0b013e318182254b
  13. Kamei C, Ohuchi M, Sugimoto Y, Okuma C (2000) Mechanism responsible for epileptogenic activity by first-generation H1-antagonists in rats. Brain Res 887(1): 183–186. https://www.doi.org/10.1016/s0006-8993(00)03041-9
  14. Hunter JC, Fontana DJ, Hedley LR, Jasper JR, Lewis R, Link RE, Secchi R, Sutton J, Eglen RM (1997) Assessment of the role of alpha2-adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br J Pharmacol 122(7): 1339–1344. https://www.doi.org/10.1038/sj.bjp.0701520
  15. Арушанян ЭБ, Бейер ЭВ, Каминская ОВ, Сотникова ЛК (2015) Позитивные аспекты сочетанного влияния мелатонина и феназепама на поведенческую активность крыс. Мед вестн Северного Кавказа 1(37): 84–88. [Arushanyan EB, Beyer EV, Kaminskaya OV, Sotnikova LK (2015) Positive aspects of the combined effect of melatonin and phenazepam on the behavioral activity of rats. Med Herald North Caucasus 1(37): 84–88. (In Russ)]. https://www.doi.org/10.14300/mnnс.2015.10014
  16. Кан АВ, Приходько ВА, Сысоев ЮИ, Оковитый СВ (2021) Влияние феназепама на амплитудные характеристики ритмов электрокортикограмм у крыс. Бюлл мед науки 4(24): 108–111. [Kan AV, Prikhodko VA, Sysoev YuI, Okovity SV (2021) Effect of phenazepam on the amplitude characteristics of electrocorticogram rhythms in rats. Bull Med Sci 4(24): 108–111. (In Russ)]. https://www.doi.org/10.31684/25418475-2021-4-108
  17. Garrity AG, Botta S, Lazar SB, Swor E, Vanini G, Baghdoyan HA, Lydic R (2015) Dexmedetomidine-induced sedation does not mimic the neurobehavioral phenotypes of sleep in Sprague Dawley rat. Sleep 38(1): 73–84. https://www.doi.org/10.5665/sleep.4328
  18. Paalzow GHM, Paalzow LK (1985) Promethazine both facilitates and inhibits nociception in rats: Effect of the testing procedure. Psychopharmacology 85: 31–36. https://www.doi.org/10.1007/BF00427318
  19. Дроздов АЛ, Демченко ЕМ, Эйяд А, Неруш ОП (2011) Влияние психотропных лекарственных средств на спонтанную поведенческую активность белых крыс. Вiсн Днiпропетров унiвер Бiол Мед 1(2): 47–53. [Drozdov AL, Demchenko EM, Eyad A, Nerush OP (2011) The influence of psychotropic drugs on the spontaneous behavioral activity of white rats. Visn Dnipropetrov Univer Biol Med 1(2): 47–53. (In Russ)].
  20. Shits DD, Puchik MM, Prikhodko VA, Sysoev YuI, Okovityi SV (2022) Effects of promethazine on the amplitude and spectral characteristics of electrocorticograms in rats. Bull Perm Univ Biol (4): 352–356. https://www.doi.org/10.17072/1994-9952-2022-4-352-356
  21. Krijzer F, Koopman P, Olivier B (1993) Classification of psychotropic drugs based on pharmacoelectrocorticographic studies in vigilance-controlled rats. Neuropsychobiology 28(3): 122–137. https://www.doi.org/10.1159/000119015
  22. Dimpfel W (2003) Preclinical data base of pharmaco-specific rat EEG fingerprints (tele-stereo-EEG). Eur J Med Res 8(5): 199–207.
  23. Горячкина МВ, Белоусова ТА (2014) Хлоропирамин: клинические аспекты применения. РМЖ Мед обозр 22(24): 1785–1789. [Goryachkina MV, Belousova TA (2014) Chloropyramine: clinical aspects of use. RMJ Med Rev 22(24): 1785–1789. (In Russ)].
  24. Blessing WW, Blessing EM, Mohammed M, Ootsuka Y (2017) Clozapine, chlorpromazine and risperidone dose-dependently reduce emotional hyperthermia, a biological marker of salience. Psychopharmacology (Berl) 234(21): 3259–3269. https://www.doi.org/10.1007/s00213-017-4710-x
  25. Rebec GV, Gelman J, Alloway KD, Bashore TR (1983) Cataleptogenic potency of the antipsychotic drugs is inversely correlated with neuronal activity in the amygdaloid complex of the rat. Pharmacol Biochem Behav 19(5): 759–763. https://www.doi.org/10.1016/0091-3057(83)90076-x
  26. Casey JF, Bennett IF, Lindley CJ, Holister LE, Gordon MH, Springer NN (1960) Drug therapy in schizophrenia. A controlled study of the relative effectiveness of chlorpromazine, promazine, phenobarbital, and placebo. AMA Arch Gen Psychiatry 2: 210–220. https://www.doi.org/10.1001/archpsyc.1960.03590080086012
  27. Ramachandraiah CT, Subramaniam N, Tancer M (2009) The story of antipsychotics: Past and present. Indian J Psychiatry 51(4): 324–326. https://www.doi.org/10.4103/0019-5545.58304
  28. Yonemura K, Miyanaga K, Machiyama Y (1998) Profiles of the affinity of antipsychotic drugs for neurotransmitter receptors and their clinical implication. Kitakanto Med J 48(2): 87–102. https://www.doi.org/10.2974/KMJ.48.87
  29. Promethazine. Ligand Activity Charts. IUPHAR/BPS Guide to Pharmacology. Режим доступа: https://www.guidetopharmacology.org (доступ от 29.05.2023)
  30. Ghoneim OM, Legere JA, Golbraikh A, Tropsha A, Booth RG (2006) Novel ligands for the human histamine H1 receptor: synthesis, pharmacology, and comparative molecular field analysis studies of 2-dimethylamino-5-(6)-phenyl-1,2,3,4-tetrahydronaphthalenes. Bioorg Med Chem 2006 Oct 14(19): 6640–6658. https://www.doi.org/10.1016/j.bmc.2006.05.077
  31. Li P, Snyder GL, Vanover KE (2016) Dopamine Targeting Drugs for the Treatment of Schizophrenia: Past, Present and Future. Curr Top Med Chem 16(29): 3385–3403. https://www.doi.org/10.2174/1568026616666160608084834
  32. Droperidol. Ligand Activity Charts. IUPHAR/BPS Guide to Pharmacology. Режим доступа: https://www.guidetopharmacology.org (доступ от 29.05.2023)
  33. Donahue TJ, Hillhouse TM, Webster KA, Young R, De Oliveira EO, Porter JH (2017) Discriminative stimulus properties of the atypical antipsychotic amisulpride: comparison to its isomers and to other benzamide derivatives, antipsychotic, antidepressant, and antianxiety drugs in C57BL/6 mice. Psychopharmacology (Berl) 234(23-24): 3507–3520. https://www.doi.org/10.1007/s00213-017-4738-y
  34. Meltzer HY, Bobo WV (2012) Antipsychotic and anticholinergic drugs. In: M Gelder (ed) New Oxford Textbook of Psychiatry 2 ed. Oxford. Oxford Acad.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (481KB)
3.

Baixar (823KB)
4.

Baixar (448KB)
5.

Baixar (282KB)
6.

Baixar (358KB)
7.

Baixar (307KB)
8.

Baixar (263KB)

Declaração de direitos autorais © Ю.И. Сысоев, Д.Д. Шиц, М.М. Пучик, И.С. Князева, М.С. Корелов, В.А. Приходько, И.А. Титович, Н.О. Селизарова, С.В. Оковитый, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies