The Role of Variability in Monoamine Transporter Genes in Sports Physiology

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Monoamine transporters (MATs) are responsible for the reuptake of dopamine, serotonin, and noradrenaline, modulating the concentration of these essential brain neurotransmitters and thus regulating behavior, mood, and cognitive functions. The study of the role of various genes in complex physiological processes is a promising area of neurobiology and sport physiology. Here, we summarize mounting evidence linking specific genetic variants of MAT genes to various aspects of sport performance. For example, the allele 10 of the dopamine transporter gene (DAT), the allele L of the serotonin transporter gene (SERT) and single-nucleotide polymorphism rs1805065 (Thr99Ile) of the noradrenaline transporter gene (NET) appear to correlate with higher performance in athletes due to resistance to stress, maintenance of motivation and cognitive behavioral competencies – qualities necessary for achieving success in sport. Thus, physiological performance in various sports may be partially genetically determined and controlled by the MAT genes.

Sobre autores

A. Cherepanova

Sirius University of Science and Technology

Email: avkalueff@gmail.com
Russia, Sirius

Y. Bravy

Sirius University of Science and Technology

Email: avkalueff@gmail.com
Russia, Sirius

A. Karabelsky

Sirius University of Science and Technology

Email: avkalueff@gmail.com
Russia, Sirius

M. Kotova

Sirius University of Science and Technology

Email: avkalueff@gmail.com
Russia, Sirius

T. Kolesnikova

Sirius University of Science and Technology

Email: avkalueff@gmail.com
Russia, Sirius

A.V. Kalueff

Sirius University of Science and Technology; Institute of Translational Biomedicine, St. Petersburg State University; Institute of Experimental Medicine, Almazov National Medical Research Centre,
Ministry of Healthcare of Russian Federation; Ural Federal University; Granov Russian Scientific Research of Center for Radiology and Surgical Technologies,
Ministry of Healthcare of Russian Federation

Autor responsável pela correspondência
Email: avkalueff@gmail.com
Russia, Sirius; Russia, St. Petersburg; Russia, St. Petersburg; Russia, Yekaterinburg; Russia, St. Petersburg

Bibliografia

  1. Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: Structure, regulation and function. Nat Rev Neurosci 4: 13–25. https://doi.org/10.1038/nrn1008
  2. Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ, Stromgaard K, Gether U (2011) SLC6 neurotransmitter transporters: Structure, function, and regulation. Pharmacol Rev 63: 585–640. https://doi.org/10.1124/pr.108.000869
  3. Benarroch EE (2013) Monoamine transporters: Structure, regulation, and clinical implications. Neurology 81: 761–768. https://doi.org/10.1212/WNL.0b013e3182a1ab4a
  4. Aggarwal S, Mortensen OV (2017) Overview of monoamine transporters. Curr Protoc Pharmacol 2017: 12.16.1–12.16.17. https://doi.org/10.1002/cpph.32
  5. Manepalli S, Surratt CK, Madura JD, Nolan TL (2012) Monoamine transporter structure, Function, Dynamics, and Drug discovery: A computational perspective. AAPS J 14: 820–831. https://doi.org/10.1208/s12248-012-9391-0
  6. Wimalasena K (2011) Vesicular monoamine transporters: Structure-function, pharmacology, and medicinal chemistry. Med Res Rev 31: 483–519. https://doi.org/10.1002/med.20187
  7. Greengard P (2001) The Neurobiology of Slow Synaptic Transmission. Science 294: 1024–1030. https://doi.org/10.1126/science.294.5544.1024
  8. Gainetdinov RR, Caron MG (2003) Monoamine Transporters: From Genes To Behavior. Annu Rev Pharmacol Toxicol 43: 261–284. https://doi.org/10.1146/annurev.pharmtox.43.050802.112309
  9. Latorre E, Mesonero JE, Harries LW (2019) Alternative splicing in serotonergic system: Implications in neuropsychiatric disorders. J Psychopharmacol 33: 1352–1363. https://doi.org/10.1177/0269881119856546
  10. Edinoff AN, Akuly HA, Hanna TA, Ochoa CO, Patti SJ, Ghaffar YA, Kaye AD, Viswanath O, Urits I, Bo-yer AG, Cornett EM, Kaye AM (2021) Selective serotonin reuptake inhibitors and adverse effects: A narrative review. Neurol Int 13: 387–401. https://doi.org/10.3390/neurolint13030038
  11. Ralph RJ, Paulus MP, Fumagalli F, Caron MG, Geyer MA (2001) Prepulse Inhibition Deficits and Perseverative Motor Patterns in Dopamine Transporter Knock-Out Mice: Differential Effects of D1 and D2 Receptor Antagonists. J Neurosci 21: 305–313. https://doi.org/10.1523/jneurosci.21-01-00305.2001
  12. Zhuang X, Oosting RS, Jones SR, Gainetdinov RR, Miller GW, Caron MG, Hen R (2000) Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci U S A 98: 1982–1987. https://doi.org/10.1073%2Fpnas.98.4.1982
  13. Holmes A, Murphy DL, Crawley JN (2003) Abnormal behavioral phenotypes of serotonin transporter knockout mice: Parallels with human anxiety and depression. Biol Psychiatry 54: 953–959. https://doi.org/10.1016/j.biopsych.2003.09.003
  14. Olivier J, Cools A, Ellenbroek B, Cuppen E, Homberg J (2010) The serotonin transporter knock-out rat: A review. In: Experimental Models in Serotonin Transporter Research. Cambridge Univer Press. 170–213. https://doi.org/10.1017/CBO9780511729935.007
  15. Shoji H, Ikeda K, Miyakawa T (2023) Behavioral phenotype, intestinal microbiome, and brain neuronal activity of male serotonin transporter knockout mice. Mol Brain 16: 32. https://doi.org/10.1186/s13041-023-01020-2
  16. Carson RP, Robertson D (2002) Genetic Manipulation of Noradrenergic Neurons. J Pharmacol Exp Ther 301: 410–417. https://doi.org/10.1124/jpet.301.2.410
  17. Giros B, El S, Bertrand ML, Caron MG (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett 295: 149–154. https://doi.org/10.1016/0014-5793(91)81406-x
  18. Lesch K-P, Bailing U, Gross J, Strauss K, Wolozin BL, Murphy DL, Riederer P (1994) m Journal of Neural Transmission Organization of the human serotonin transporter gene Rapid Communication. J Neural Transm Gen Sect 95: 157–162. https://doi.org/10.1007/bf01276434
  19. Kim CH, Waldman ID, Blakely RD, Kim KS (2008) Functional gene variation in the human norepinephrine transporter: Association with attention deficit hyperactivity disorder. Ann N Y Acad Sci 1129: 256–260. https://doi.org/10.1196/annals.1417.023
  20. Kawarai T, Kawakami H, Yamamura Y, Nakamura S (1997) Structure and organization of the gene encoding human dopamine transporter. Gene 195: 11–18. https://doi.org/10.1016/s0378-1119(97)00131-5
  21. Hahn MK, Blakely RD (2002) Monoamine transporter gene structure and polymorphisms in relation to psychiatric and other complex disorders. Pharmacogenom J 2: 217–235. https://doi.org/10.1038/sj.tpj.6500106
  22. Amara SG, Park J (1995) Monoamine Transporters: Basic Biology with Clinical Implications. The Neuroscientist 1: 259–267. https://doi.org/10.1177/107385849500100503
  23. Cherepkova E V, Maksimov VN, Kushnarev AP, Shakhmatov II, Aftanas LI (2019) The polymorphism of dopamine receptor D4 (DRD4) and dopamine transporter (DAT) genes in the men with antisocial behaviour and mixed martial arts fighters. World J Biol Psychiatry 20: 402–415. https://doi.org/10.1080/15622975.2017.1366056
  24. Bannon MJ, Michelhaugh SK, Wang J, Sacchetti P (2001) The human dopamine transporter gene: gene organization, transcriptional regulation, and potential involvement in neuropsychiatric disorders. Eur Neuropsychopharmacol 11: 449–455. https://doi.org/10.1016/s0924-977x(01)00122-5
  25. Murphy DL, Lerner A, Rudnick G, Lesch KP (2004) Serotonin transporter: Gene, genetic disorders, and pharmacogenetics. Mol Interv 4: 109–123. https://doi.org/10.1124/mi.4.2.8
  26. Bradley CC, Blakely RD (1997) Alternative Splicing of the Human Serotonin Transporter Gene. J Neurochem 69: 1356-1367. https://doi.org/10.1046/j.1471-4159.1997.69041356.x
  27. Manzella C, Singhal M, Ackerman M, Alrefai WA, Saksena S, Dudeja PK, Gill RK (2020) Serotonin transporter untranslated regions influence mRNA abundance and protein expression. Gene Rep 18: 100513. https://doi.org/10.1016/j.genrep.2019.100513
  28. Cooper A, Woulfe D, Kilic F (2019) Post-translational modifications of serotonin transporter. Pharmacol Res 140: 7–13. https://doi.org/10.1016/j.phrs.2018.10.018
  29. Belfer I, Phillips G, Taubman J, Hipp H, Lipsky RH, Enoch MA, Max MB, Goldman D (2004) Haplotype architecture of the norepinephrine transporter gene SLC6A2 in four populations. J Hum Genet 49: 232–245. https://doi.org/10.1007/s10038-004-0140-9
  30. A Reith ME (2002) Neurotransmitter Transporters Structure, Function, and Regulation. Contempor Neuroscie 1–518.
  31. Inoue-Murayama M, Adachi S, Mishima N, Mitani H, Takenaka O, Terao K, Hayasaka I, Ito ichi, Murayama Y (2002) Variation of variable number of tandem repeat sequences in the 3 0-untranslated region of primate dopamine transporter genes that affects reporter gene expression. Neurosci Lett 334: 206–210. https://doi.org/10.1016/s0304-3940(02)01125-4
  32. Tunbridge EM, Narajos M, Harrison CH, Beresford C, Cipriani A, Harrison PJ (2019) Which Dopamine Polymorphisms Are Functional? Systematic Review and Meta-analysis of COMT, DAT, DBH, DDC, DRD1–5, MAOA, MAOB, TH, VMAT1, and VMAT2. Biol Psychiatry 86: 608–620. https://doi.org/10.1016/j.biopsych.2019.05.014
  33. Odgerel Z, Talati A, Hamilton SP, Levinson DF, Weissman MM (2013) Genotyping serotonin transporter polymorphisms 5-HTTLPR and rs25531 in European- and African-American subjects from the National Institute of Mental Health’s Collaborative Center for Genomic Studies. Transl Psychiatry 3: 1–6. https://doi.org/10.1038/tp.2013.80
  34. Heils A, M6gner R, Lesch KP (1997) The human serotonin transporter gene polymorphism-basic research and clinical implications. J Neural Transm (Vienna) 104: 1005–1014. https://doi.org/10.1007/bf01273314
  35. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington HL, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science 301(5631): 386–389. https://doi.org/10.1126/science.1083968
  36. Cervilla JA, Rivera M, Molina E, Torres-González F, Bellón JA, Moreno B, De Dios Luna J, Lorente JA, De Diego-Otero Y, King M, Nazareth I, Gutiérrez B (2006) The 5-HTTLPR s/s genotype at the serotonin transporter gene (SLC6A4) increases the risk for depression in a large cohort of primary care attendees: The PREDICT-gene study. Am J Med Genet Part B: Neuropsych Genet 141: 912–917. https://doi.org/10.1002/ajmg.b.30455
  37. Rahman MS, Guban P, Wang M, Melas PA, Forsell Y, Lavebratt C (2017) The serotonin transporter promoter variant (5-HTTLPR) and childhood adversity are associated with the personality trait openness to experience. Psychiatry Res 257: 322–326. https://doi.org/10.1016/j.psychres.2017.07.071
  38. Fichna JP, Humińska-Lisowska K, Safranow K, Adamczyk JG, Cięszczyk P, Żekanowski C, Berdyński M (2021) Rare variant in the slc6a2 encoding a norepinephrine transporter is associated with elite athletic performance in the polish population. Genes (Basel) 12: 1–7. https://doi.org/10.3390/genes12060919
  39. Marques FZ, Eikelis N, Bayles RG, Lambert EA, Straznicky NE, Hering D, Esler MD, Head GA, Barton DA, Schlaich MP, Lambert GW (2017) A polymorphism in the norepinephrine transporter gene is associated with affective and cardiovascular disease through a microRNA mechanism. Mol Psychiatry 22: 134–141. https://doi.org/10.1038/mp.2016.40
  40. Zhang H, Smith GN, Liu X, A Holden JJ, Jja HA, Holden JJ (2010) Association of MAOA, 5-HTT, and NET promoter polymorphisms with gene expression and protein activity in human placentas. Physiol Genom 42: 85–92. https://doi.org/10.1152/physiolgenomics.00220.2009.-Monoamine
  41. Min W, Li T, Ma X, Li Z, Yu T, Gao D, Zhang B, Yun Y, Sun X (2009) Monoamine transporter gene polymorphisms affect susceptibility to depression and predict antidepressant response. Psychopharmacology (Berl) 205: 409–417. https://doi.org/10.1007/s00213-009-1550-3
  42. Zhao X, Huang Y, Ma H, Jin Q, Wang Y, Zhu G (2013) Association between major depressive disorder and the norepinephrine transporter polymorphisms T-182C and G1287A: A meta-analysis. J Affect Disord 150: 23–28. https://doi.org/10.1016/j.jad.2013.03.016
  43. Kim JW, Biederman J, McGrath CL, Doyle AE, Mick E, Fagerness J, Purcell S, Smoller JW, Sklar P, Faraone SV (2008) Further evidence of association between two NET single-nucleotide polymorphisms with ADHD. Mol Psychiatry 13: 624–630. https://doi.org/10.1038/sj.mp.4002090
  44. Pokrywka A, Kaliszewski P, Majorczyk E, Acny ZZ (2013) Genes in sport and doping. Biol Sport 30: 155–161. https://doi.org/10.5604%2F20831862.1059606
  45. Valeeva EV, Ahmetov II, Rees T (2019) Psychogenetics and sport. In: Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions. Acad Press. 147–165. https://doi.org/10.1016/B978-0-12-816193-7.00007-5
  46. Blijlevens SJE, Elferink-Gemser MT, Wylleman P, Bool K, Visscher C (2018) Psychological characteristics and skills of top-level Dutch gymnasts in the initiation, development and mastery stages of the athletic career. Psychol Sport and Exercise 38: 202–210. https://doi.org/10.1016/j.psychsport.2018.07.001
  47. Youn BY, Ko SG, Kim JY (2021) Genetic basis of elite combat sports athletes: A systematic review. Biol Sport 38: 667–675. https://doi.org/10.5114/biolsport.2022.102864
  48. Bozaslan BS, Yükseloglu EH (2022) Evaluation of the Effects of Emotional and Violence-Related Genes in Athletes. J Neurobehav Sci 9: 68–71. https://doi.org/10.4103/jnbs.jnbs_18_22
  49. Tucker R, Collins M (2012) What makes champions? A review of the relative contribution of genes and training to sporting success. Br J Sports Med 46: 555–561. https://doi.org/10.1136/bjsports-2011-090548
  50. Zwir I, Arnedo J, Del-Val C, Pulkki-Råback L, Konte B, Yang SS, Romero-Zaliz R, Hintsanen M, Cloninger KM, Garcia D, Svrakic DM, Rozsa S, Martinez M, Lyytikäinen LP, Giegling I, Kähönen M, Hernandez-Cuervo H, Seppälä I, Raitoharju E, de Erausquin GA, Raitakari O, Rujescu D, Postolache TT, Sung J, Keltikangas-Järvinen L, Lehtimäki T, Cloninger CR (2020) Uncovering the complex genetics of human character. Mol Psychiatry 25: 2295–2312. https://doi.org/10.1038/s41380-018-0263-6
  51. Filonzi L, Franchini N, Vaghi M, Chiesa S, Marzano FN (2015) The potential role of myostatin and neurotransmission genes in elite sport performances. J Biosci 40: 531–537. https://doi.org/10.1007/s12038-015-9542-4
  52. Peplonska B, Adamczyk JG, Siewierski M, Safranow K, Maruszak A, Sozanski H, Gajewski AK, Zekanowski C (2017) Genetic variants associated with physical and mental characteristics of the elite athletes in the Polish population. Scand J Med Sci Sports 27: 788–800. https://doi.org/10.1111/sms.12687
  53. Naureen Z, Perrone M, Paolacci S, Maltese PE, Dhuli K, Kurti D, Dautaj A, Miotto R, Casadei A, Fioretti B, Beccari T, Romeo F, Bertelli M (2020) Genetic test for the personalization of sport training. Acta Biomed 91: 1–15. https://doi.org/10.23750/abm.v91i13-s.10593
  54. Al-Khelaifi F, Diboun I, Donati F, Botrè F, Abraham D, Hingorani A, Albagha O, Georgakopoulos C, Suhre K, Yousri NA, Elrayess MA (2019) Metabolic GWAS of elite athletes reveals novel genetically-influenced metabolites associated with athletic performance. Sci Rep 10: 10473. https://doi.org/10.1038/s41598-019-56496-7
  55. Boulygina, EA, Borisov, OV, Valeeva, EV, Semenova, EA, Kostryukova ES, Kulemin NA, Larin AK, Nabiullina RM, Mavliev FA, Akhatov AM, Andryushchenko ON, Andryushchenko LB, Zmijewski P, Generozov EV, Ahmetov II (2020) Whole genome sequencing of elite athletes. Biol Sport 37: 295–304. https://doi.org/10.5114/biolsport.2020.96272
  56. Pranckeviciene E, Gineviciene V, Jakaitiene A, Januska L, Utkus A (2021) Total genotype score modelling of polygenic endurance-power profiles in Lithuanian elite athletes. Genes (Basel) 12: 1067. https://doi.org/10.3390/genes12071067
  57. Pickering C, Suraci B, Semenova EA, Boulygina EA, Kostryukova ES, Kulemin NA, Borisov OV, Khabibova SA, Larin AK, Pavlenko AV, Lyubaeva EV, Popov DV, Lysenko EA, Vepkhvadze TF, Lednev EM, Leonska-Duniec A, Pajak B, Chycki J, Moska W, Lulinska-Kuklik E, Dornowski M, Maszczyk A, Bradley B, Kana-Ah A, Cieszczyk P, Generozov E V, Ahmetov II (2019) A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players. J Strength Cond Res 33: 2344–2351. https://doi.org/10.1519/JSC.0000000000003259
  58. Moreland E, Borisov OV, Semenova EA, Larin AK, Andryushchenko ON, Andryushchenko LB, Generozov EV, Williams AG, Ahmetov II (2022) Polygenic Profile of Elite Strength Athletes. J Strength and Condit Res 36: 2509–2514. https://doi.org/10.1519/JSC.0000000000003901
  59. Goodlin GT, Roos AK, Roos TR, Hawkins C, Beache S, Baur S, Kim SK (2015) Applying personal genetic data to injury risk assessment in athletes. PloS One 10: e0122676. https://doi.org/10.1371/journal.pone.0122676
  60. Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM (2016) Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol 116: 1595–1625. https://doi.org/10.1007/s00421-016-3411-1
  61. Lippi G, Longo UG, Maffulli N (2010) Genetics and sports. Br Med Bull 93: 27–47. https://doi.org/10.1093/bmb/ldp007
  62. Leźnicka K, Niewczas M, Kurzawski M, Cięszczyk P, Safranow K, Ligocka M, Białecka M (2018) The association between COMT rs4680 and OPRM1 rs1799971 polymorphisms and temperamental traits in combat athletes. Pers Individ Dif 124: 105–110. https://doi.org/10.1016/j.paid.2017.12.008
  63. Sanhueza JA, Zambrano T, Bahamondes-Avila C, Salazar LA (2016) Association of Anxiety-Related Polymorphisms with Sports Performance in Chilean Long Distance Triathletes: A Pilot Study. J Sports Sci Med 15: 554–561.
  64. Znazen H, Chtara M, Butovskaya M, Siala H, Messaoud T, Souissi N (2016) Association between angiotensin-converting enzyme gene polymorphism and competitive anxiety in Tunisian athlete. Sport Sci Health 12: 233–238. https://doi.org/10.1007/s11332-016-0280-2
  65. Bredemeier K, Beevers CG, McGeary JE (2014) Serotonin transporter and BDNF polymorphisms interact to predict trait worry. Anxiety Stress Coping 27: 712–721. https://doi.org/10.1080/10615806.2014.909928
  66. Van Der Mee DJ, Fedko IO, Hottenga JJ, Ehli EA, Van Der Zee MD, Ligthart L, Van Beijsterveldt TCEM, Davies GE, Bartels M, Landers JG, De Geus EJC (2018) Dopaminergic Genetic Variants and Voluntary Externally Paced Exercise Behavior. Med Sci Sports Exerc 50: 700–708. https://doi.org/10.1249/MSS.0000000000001479
  67. Urwin RE, Bennetts BH, Wilcken B, Lampropoulos B, Beumont PJV, Russell JD, Tanner SL, Nunn KP (2003) Gene-gene interaction between the monoamine oxidase A gene and solute carrier family 6 (neurotransmitter transporter, noradrenalin) member 2 gene in anorexia nervosa (restrictive subtype). Eur J Human Genet 11: 945–950. https://doi.org/10.1038/sj.ejhg.5201077
  68. El-Seedy AS, Botros MH, Page G, Ladeveze V (2023) Allelic Variants on SLC6A3 Neurotransmitter Gene and Their Relationship with Personality Traits Scales in Egyptian Athletes. Archiv Mol Biol and Genet 2: 9–19. https://doi.org/10.33696/genetics.2.012
  69. Grzywacz A, Chmielowiec K, Boroń A, Michałowska-Sawczyn M, Chmielowiec J, Trybek G, Mroczek B, Leźnicka K, Cieszczyk P, Masiak J (2021) Influence of dat1 promotor methylation on sports performance. Genes (Basel) 12: 1425. https://doi.org/10.3390/genes12091425
  70. Corak A, Kapici S, Sercan C, Akkoç O, Ulucan K (2017) A pilot study for determination of anxiety related SLC6A4 promoter “S” and “L” alleles in healthy Turkish athletes. Cell Mol Biol 63: 29–31. https://doi.org/10.14715/cmb/2017.63.5.6
  71. Petito A, Altamura M, Iuso S, Padalino FA, Sessa F, D’Andrea G, Margaglione M, Bellomo A (2016) The relationship between personality traits, the 5HTT polymorphisms, and the occurrence of anxiety and depressive symptoms in elite athletes. PLoS One 11: e0156601. https://doi.org/10.1371/journal.pone.0156601
  72. Lebrun F, MacNamara À, Rodgers S, Collins D (2018) Learning from Elite Athletes’ experience of depression. Front Psychol 9: 2062. https://doi.org/10.3389/fpsyg.2018.02062
  73. Sysoeva OV, Maluchenko NV, Timofeeva MA, Portnova GV, Kulikova MA, Tonevitsky AG, Ivanitsky AM (2009) Aggression and 5HTT polymorphism in females: Study of synchronized swimming and control groups. Int J Psychophysiol 72: 173–178. https://doi.org/10.1016/j.ijpsycho.2008.12.005
  74. Ulucan K, Yalcin S, Akbas B, Uyumaz F, Konuk M (2014) Analysis of Solute Carrier Family 6 Member 4 Gene promoter polymorphism in young Turkish basketball players. J Neurobehav Sci 1: 37–40. https://doi.org/10.5455/jnbs.1403730925
  75. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, Egan MF, Mattay VS, Hariri AR, Weinberger DR (2005) 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: A genetic susceptibility mechanism for depression. Nat Neurosci 8: 828–834. https://doi.org/10.1038/nn1463
  76. Bönisch H, Brüss M (2006) The Norepinephrine Transporter in Physiology and Disease. Handb Exp Pharmacol 175: 485–524. https://doi.org/10.1007/3-540-29784-7_20
  77. Kohli U, Hahn MK, English BA, Sofowora GG, Muszkat M, Li C, Blakely RD, Stein CM, Kurnik D (2011) Genetic variation in the presynaptic norepinephrine transporter is associated with blood pressure responses to exercise in healthy humans. Pharmacogenet Genomics 21: 171–178. https://doi.org/10.1097/FPC.0b013e328344f63e
  78. Guilherme JPLF, Bigliassi M, Lancha Junior AH (2019) Association study of SLC6A2 gene Thr99Ile variant (rs1805065) with athletic status in the Brazilian population. Gene 707: 53–57. https://doi.org/10.1016/j.gene.2019.05.013
  79. Varillas-Delgado D, Del Coso J, Gutiérrez-Hellín J, Aguilar-Navarro M, Muñoz A, Maestro A, Morencos E (2022) Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. Eur J Appl Physiol 122: 1811–1830. https://doi.org/10.1007/s00421-022-04945-z
  80. Guilherme JPLF, Bertuzzi R, Lima-Silva AE, Pereira A da C, Lancha Junior AH (2018) Analysis of sports-relevant polymorphisms in a large Brazilian cohort of top-level athletes. Ann Hum Genet 82: 254–264. https://doi.org/10.1111/ahg.12248
  81. Dick DM (2011) Gene-environment interaction in psychological traits and disorders. Annu Rev Clin Psychol 7: 383–409. https://doi.org/10.1146/annurev-clinpsy-032210-104518
  82. Knafo A, Jaffee SR (2013) Gene-environment correlation in developmental psychopathology. Dev Psychopathol 25: 1–6. https://doi.org/10.1017/s0954579412000855

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (161KB)

Declaração de direitos autorais © А.В. Черепанова, Я.Р. Бравый, А.В. Карабельский, М.М. Котова, Т.О. Колесникова, А.В. Калуев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies