Methods of Closed-Loop Adaptive Neurostimulation: Features, Achievements and Prospects for Development

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An innovative approach to the organization of stimulation procedures is analyzed – closed-loop adaptive neurostimulation, in which the parameters of sensory stimulation are automatically controlled by feedback signals from the person’s own physiological characteristics. The effects of using invasive and non-invasive magnetic and electrical brain stimulation, as well as the effects of closed-loop acoustic and audiovisual stimulation, controlled by human rhythmic processes are considered. Numerous examples demonstrate the features and achievements of a new approach in the treatment of various psychosomatic disorders and cognitive rehabilitation of a person. The prospects for development of this research area are outlined. The results of the author’s own research in this direction are presented.

Sobre autores

A. Fedotchev

Institute of Cell Biophysics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: fedotchev@mail.ru
Russia, Pushchino

Bibliografia

  1. Бакулин ИС, Пойдашева АГ, Павлов НА, Супонева НА, Пирадов МА, Афтанас ЛИ (2019) Транскраниальная электрическая стимуляция в улучшении функции руки при инсульте. Успехи физиол наук 50(1): 90–104. [Bakulin IS, Poidasheva AG, Pavlov NA, Suponeva NA, Piradov MA, Aftanas LI (2019) Transcranial electrical stimulation in improving hand function in stroke. Usp Fiziol Nauk 50(1): 90–104. (In Russ)]. https://doi.org/10.1134/S030117981901003X
  2. Белопасова АВ, Добрынина ЛА, Кадыков АС, Бердникович ЕС, Бергельсон ГМ, Цыпуштанова ММ (2020) Неинвазивная стимуляция мозга в реабилитации пациентов с постинсультной афазией. Журн неврол психиатр им ССКорсакова 120(3-2): 23–28. [Belopasova AV, Dobrynina LA, Kadykov AS, Berdnikovich ES, Bergelson GM, Tsypushtanova MM (2020) Non-invasive brain stimulation in the rehabilitation of patients with post-stroke aphasia. Zh Nevrol Psikhiatr Im SS Korsakova 120(3-2): 23–28. (In Russ)]. https://doi.org/10.17116/jnevro202012003223
  3. Draaisma LR, Wessel MJ, Hummel FC (2020) Non-invasive brain stimulation to enhance cognitive rehabilitation after stroke. Neurosci Lett 719: 133678. https://doi.org/10.1016/j.neulet.2018.06.047
  4. De Luca R, Pollicino P, Rifici C, de Cola C, Billeri L, Marino S, Trifirò S, Fiumara E, Randazzo M, Bramanti P, Torrisi M (2021) Improving motor and cognitive recovery following severe traumatic brain injury using advanced emotional audio-video stimulation: Lessons from a case report. Medicine (Baltimore) 100(31): e26685. https://doi.org/10.1097/MD.0000000000026685
  5. Hyde J, Carr H, Kelley N, Seneviratne R, Reed C, Parlatini V, Solmi M, Rosson S, Cortese S, Brandt V (2022) Efficacy of neurostimulation across mental disorders: systematic review and meta-analysis of 208 randomized controlled trials. Mol Psychiatry 27(6): 2709–2719. https://doi.org/10.1038/s41380-022-01524-8
  6. Калинкин АА, Винокуров АГ, Калинкина ОН, Ильиных АС, Бочаров АА, Дуров АВ, Исаев ЕН, Чупаленков СМ (2019) Глубинная стимуляция в хирургии. Клин практика 10(1): 63–71. [Kalinkin AA, Vinokurov AG, Kalinkina ON, Iljanykh AS, Bocharov AA, Durov AV, Isaev EN, Chupalenkov SM (2019) Deep stimulation in surgery. Klin Praktika 10(1): 63–71. (In Russ)]. https://doi.org/10.17816/clinpract10163-71
  7. Figee M, Riva-Posse P, Choi KS, Bederson L, Mayberg HS, Kopell BH (2022). Deep Brain Stimulation for Depression. Neurotherapeutics 19(4): 1229–1245. https://doi.org/10.1007/s13311-022-01270-3
  8. Гречко АВ, Шевцова ЕЕ, Ковалева ГА, Родионова АД (2018) Вариативность применения методов сенсорной стимуляции в реабилитации пациентов с минимальными проявлениями сознания. Вестник восстановит мед 2(84): 129–135. [Grechko AV, Shevtsova EE, Kovaleva GA, Rodionova AD (2018) Variability of application of sensory stimulation methods in the rehabilitation of patients with minimal manifestations of consciousness. Vestnik Vosstanovit Med 2(84): 129–135. (In Russ)].
  9. Naryshkin AG, Egorov AY, Galanin IV (2020) Controlled Neuroplasticity. Human Physiology 46: 216–223. https://doi.org/10.1134/S0362119720020103
  10. Zhang X, Huai Y, Wei Z, Yang W, Xie Q, Yi L (2022) Non-invasive brain stimulation therapy on neurological symptoms in patients with multiple sclerosis: A network meta analysis. Front Neurol 13:1007702. https://doi.org/10.3389/fneur.2022.1007702
  11. Can YS, Iles-Smith H, Chalabianloo N, Ekiz D, Fernández-Álvarez J, Repetto C, Riva G, Ersoy C (2020) How to Relax in Stressful Situations: A Smart Stress Reduction System. Healthcare (Basel) 8(2): E100. https://doi.org/10.3390/healthcare8020100
  12. Kan RLD, Zhang BBB, Zhang JJQ, Kranz GS (2020) Non-invasive brain stimulation for posttraumatic stress disorder: a systematic review and meta-analysis. Transl Psychiatry 10(1): 168. https://doi.org/10.1038/s41398-020-0851-5
  13. Лагода ДЮ, Добрынина ЛА, Супонева НА, Бакулин ИС, Пойдашева АГ, Цыпуштанова ММ, Кадыков АС, Пирадов МА (2021) Ритмическая транскраниальная магнитная стимуляция в терапии умеренных когнитивных расстройств при церебральной микроангиопатии. Анналы клин эксперимент неврол 15(4): 5–14. [Lagoda DYu, Dobrynina LA, Suponeva NA, Bakulin IS, Poidasheva AG, Tsypushtanova MM, Kadykov AS, Piradov MA (2021) Rhythmic transcranial magnetic stimulation in the treatment of moderate cognitive impairment in cerebral microangiopathy. Annaly Klin I Eksperiment Nevrol 15(4): 5–14. (In Russ)].https://doi.org/10.54101/ACEN.2021.4.1
  14. Wang Y, Xu N, Wang R, Zai W (2022) Systematic review and network meta-analysis of effects of noninvasive brain stimulation on post-stroke cognitive impairment. Front Neurosci 16: 1082383. https://doi.org/10.3389/fnins.2022.1082383
  15. Бакулин ИС, Пойдашева АГ, Медынцев АА, Супонева НА, Пирадов МА (2020) Транскраниальная магнитная стимуляция в когнитивной нейронауке: методологические основы и безопасность. Рос журн когнитив науки 7(3): 25–44. [Bakulin IS, Poidasheva AG, Medyntsev AA, Suponeva NA, Piradov MA (2020) Transcranial magnetic stimulation in cognitive neuroscience: methodological foundations and safety. Ross Zhurn Kognitiv Nauki 7(3): 25–44. (In Russ]. https://doi.org/10.47010/20.3.2
  16. Fisicaro F, Lanza G, Bella R, Pennisi M (2020) “Self-Neuroenhancement”: The Last Frontier of Noninvasive Brain Stimulation? J Clin Neurol 16(1): 158–159. https://doi.org/10.3988/jcn.2020.16.1.158
  17. Qu X, Wang Z, Cheng Y, Xue Q, Li Z, Li L, Feng L, Hartwigsen G, Chen L (2022) Neuromodulatory effects of transcranial magnetic stimulation on language performance in healthy participants: Systematic review and meta-analysis. Front Hum Neurosci 16: 1027446. https://doi.org/10.3389/fnhum.2022.1027446
  18. Janssens SEW, Sack AT (2021) Spontaneous Fluctuations in Oscillatory Brain State Cause Differences in Transcranial Magnetic Stimulation Effects Within and Between Individuals. Front Hum Neurosci 15:802244. https://doi.org/10.3389/fnhum.2021.802244
  19. Antal A, Luber B, Brem AK (2022) Non-invasive brain stimulation and neuroenhancement. Clin Neurophysiol Pract 7: 146–165. https://doi.org/10.1016/j.cnp.2022.05.002
  20. Schutter DJLG, Smits F, Klaus J (2023) Mind matters: A narrative review on affective state-dependency in non-invasive brain stimulation. Int J Clin Health Psychol 23(3): 100378. https://doi.org/10.1016/j.ijchp.2023.100378
  21. Бакулин ИС, Пойдашева АГ, Лагода ДЮ, Супонева НА, Пирадов МА (2021) Перспективы развития терапевтической транскраниальной магнитной стимуляции. Нервные болезни 4: 3–10. [Bakulin IS, Poidasheva AG, Lagoda DYu, Suponeva NA, Piradov MA (2021) Prospects for the development of therapeutic transcranial magnetic stimulation. Nervnye Bolezni 4: 3–10. (In Russ)].https://doi.org/10.24412/2226-0757-2021-12371
  22. Kasten FH, Herrmann CS (2022) The hidden brain-state dynamics of tACS aftereffects. Neuroimage 264: 119713. https://doi.org/10.1016/j.neuroimage.2022.119713
  23. Zanos S (2019) Closed-Loop Neuromodulation in Physiological and Translational Research. Cold Spring Harb Perspect Med 9(11): a034314. https://doi.org/10.1101/cshperspect.a034314
  24. Provenza NR, Matteson ER, Allawala AB (2019) The Case for Adaptive Neuromodulation to Treat Severe Intractable Mental Disorders. Front Neurosci 13: 152.https://doi.org/10.3389/fnins.2019.00152
  25. Sun FT, Morrell MJ (2014) Closed-loop neurostimulation: the clinical experience. Neurotherapeutics 11(3): 553–563. https://doi.org/10.1007/s13311-014-0280-3
  26. Potter SM, El Hady A, Fetz EE (2014) Closed-loop neuroscience and neuroengineering. Front Neural Circuits 8: 115. https://doi.org/10.3389/fncir.2014.00115
  27. Hebb AO, Zhang JJ, Mahoor MH, Tsiokos C, Matlack C, Chizeck HJ, Pouratian N (2014) Creating the feedback loop: closed-loop neurostimulation. Neurosurg Clin N Am 25(1): 187–204. https://doi.org/10.1016/j.nec.2013.08.006
  28. Arlotti M, Rosa M, Marceglia S, Barbieri S, Priori A (2016) The adaptive deep brain stimulation challenge. Parkinsonism Relat Disord 28: 12–17. https://doi.org/10.1016/j.parkreldis.2016.03.020
  29. Lo MC, Widge AS (2017) Closed-loop neuromodulation systems: next-generation treatments for psychiatric illness. Int Rev Psychiat 29(2): 191–204. https://doi.org/10.1080/09540261.2017.1282438
  30. Oxley T, Opie N (2019) Closed-Loop Neuromodulation: Listen to the Body. World Neurosurg 122: 415–416. https://doi.org/10.1016/j.wneu.2018.11.132
  31. Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, Weiskopf N, Blefari ML, Rana M, Oblak E, Birbaumer N, Sulzer J (2017) Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci 18(2): 86–100. https://doi.org/10.1038/nrn.2016.164
  32. Papo D (2019) Neurofeedback: Principles, appraisal, and outstanding issues. Eur J Neurosci 49(11): 1454–1469. https://doi.org/10.1111/ejn.14312
  33. Dessy E, Mairesse O, van Puyvelde M, Cortoos A, Neyt X, Pattyn N (2020) Train Your Brain? Can We Really Selectively Train Specific EEG Frequencies With Neurofeedback Training. Front Hum Neurosci 10(14): 22. https://doi.org/10.3389/fnhum.2020.00022
  34. Alkoby O, Abu-Rmileh A, Shriki O, Todder D (2018) Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning. Neuroscience 378: 155–164. https://doi.org/10.1016/j.neuroscience.2016.12.050
  35. Kadosh KC, Staunton G (2019) A systematic review of the psychological factors that influence neurofeedback learning outcomes. Neuroimage 185: 545–555. https://doi.org/10.1016/j.neuroimage.2018.10.021
  36. De Vico Fallani F, Bassett DS (2019) Network neuroscience for optimizing brain-computer interfaces. Phys Life Rev 31: 304–309. https://doi.org/10.1016/j.plrev.2018.10.001
  37. Zhou X, Miller JP (2019) Commentary: The Emerging Role of Biomarkers in Adaptive Modulation of Clinical Brain Stimulation. Neurosurgery 85(3): E440–E441. https://doi.org/10.1093/neuros/nyz097
  38. Fedotchev AI, Parin SB, Polevaya SA (2021) The Principle of a Closed Feedback Loop of Human Endogenous Rhythms in Modern Neurofeedback and Adaptive Neurostimulation Technologies. Biophysics 66(2): 359–361. https://doi.org/10.1134/S0006350921020056
  39. Bergmann TO (2018) Brain State-Dependent Brain Stimulation. Front Psychol 9: 2108.https://doi.org/10.3389/fpsyg.2018.02108
  40. Hosain MK, Kouzani A, Tye S (2014) Closed loop deep brain stimulation: an evolving technology. Australas Phys Eng Sci Med 37(4): 619–634. https://doi.org/10.1007/s13246-014-0297-2
  41. Prosky J, Cagle J, Sellers KK, Gilron R, de Hemptinne C, Schmitgen A, Starr PA, Chang EF, Shirvalkar P (2021) Practical Closed-Loop Strategies for Deep Brain Stimulation: Lessons From Chronic Pain. Front Neurosci 15: 762097. https://doi.org/10.3389/fnins.2021.762097
  42. Edwards CA, Kouzani A, Lee KH, Ross EK (2017) Neurostimulation Devices for the Treatment of Neurologic Disorders. Mayo Clin Proc 92(9): 1427–1444. https://doi.org/10.1016/j.mayocp.2017.05.005
  43. Kuo CH, White-Dzuro GA, Ko AL (2018) Approaches to closed-loop deep brain stimulation for movement disorders. Neurosurg Focus 45(2): E2. https://doi.org/10.3171/2018.5.FOCUS18173
  44. Gonzalez-Escamilla G, Muthuraman M, Ciolac D, Coenen VA, Schnitzler A, Groppa S (2020) Neuroimaging and electrophysiology meet invasive neurostimulation for causal interrogations and modulations of brain states. Neuroimage 220: 117144. https://doi.org/10.1016/j.neuroimage.2020.117144
  45. Meidahl AC, Tinkhauser G, Herz DM, Cagnan H, Debarros J, Brown P (2017) Adaptive Deep Brain Stimulation for Movement Disorders: The Long Road to Clinical Therapy. Mov Disord 32(6): 810–819. https://doi.org/10.1002/mds.27022
  46. Neumann WJ, Turner RS, Blankertz B, Mitchell T, Kühn AA, Richardson RM (2019) Toward Electrophysiology-Based Intelligent Adaptive Deep Brain Stimulation for Movement Disorders. Neurotherapeutics 16(1): 105–118. https://doi.org/10.1007/s13311-018-00705-0
  47. Shirvalkar P, Veuthey TL, Dawes HE, Chang EF (2018) Closed-Loop Deep Brain Stimulation for Refractory Chronic Pain. Front Comput Neurosci 12: 18. https://doi.org/10.3389/fncom.2018.00018
  48. Provenzano DA, Heller JA, Hanes MC (2021) Current Perspectives on Neurostimulation for the Management of Chronic Low Back Pain: A Narrative Review. J Pain Res 14: 463–479. https://doi.org/10.2147/JPR.S249580
  49. Marceglia S, Rosa M, Servello D, Porta M, Barbieri S, Moro E, Priori A (2017) Adaptive Deep Brain Stimulation (aDBS) for Tourette Syndrome. Brain Sci 8(1). https://doi.org/10.3390/brainsci8010004
  50. Haddock A, Mitchell KT, Miller A, Ostrem JL, Chizeck HJ, Miocinovic S (2018) Automated Deep Brain Stimulation Programming for Tremor. IEEE Trans Neural Syst Rehabil Eng 26(8): 1618–1625. https://doi.org/10.1109/TNSRE.2018.2852222
  51. Habets JGV, Heijmans M, Kuijf ML, Janssen MLF, Temel Y, Kubben PL (2018) An update on adaptive deep brain stimulation in Parkinson’s disease. Mov Disord 33(12): 1834–1843. https://doi.org/10.1002/mds.115
  52. Weiss D, Massano J (2018) Approaching adaptive control in neurostimulation for Parkinson disease: Autopilot on. Neurology 90(11): 497–498. https://doi.org/10.1212/WNL.0000000000005111
  53. An Q, Yin Z, Ma R, Fan H, Xu Y, Gan Y, Gao Y, Meng F, Yang A, Jiang Y, Zhu G, Zhang J (2023) Adaptive deep brain stimulation for Parkinson’s disease: looking back at the past decade on motor outcomes. J Neurol 270(3): 1371–1387. https://doi.org/10.1007/s00415-022-11495-z
  54. Hoang KB, Cassar IR, Grill WM, Turner DA (2017) Biomarkers and Stimulation Algorithms for Adaptive Brain Stimulation. Front Neurosci 11: 564. https://doi.org/10.3389/fnins.2017.00564
  55. Hell F, Palleis C, Mehrkens JH, Koeglsperger T, Bötzel K (2019) Deep Brain Stimulation Programming 2.0: Future Perspectives for Target Identification and Adaptive Closed Loop Stimulation. Front Neurol 10: 314. https://doi.org/10.3389/fneur.2019.00314
  56. Смирнова ЕЮ, Зайцев АВ (2018) Применение оптогенетических методов для изучения и подавления эпилептической активности (обзор). Рос физиол журн им ИМ Сеченова 104(6): 620–629. [Smirnova EY, Zaitsev AV (2018) Application of optogenetic methods for studying and suppressing epileptic activity (review). Russ J Physiol 104(6): 620–629. (In Russ)]. https://doi.org/10.7868/S0869813918060011
  57. Mickle AD, Won SM, Noh KN, Yoon J, Meacham KW, Xue Y, McIlvried LA, Copits BA, Samineni VK, Crawford KE, Kim DH, Srivastava P, Kim BH, Min S, Shiuan Y, Yun Y, Payne MA, Zhang J, Jang H, Li Y, Lai HH, Huang Y, Park SI, Gereau RW 4th, Rogers JA (2019) A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565(7739): 361–365. https://doi.org/10.1038/s41586-018-0823-6
  58. Tan EKW, Au YZ, Moghaddam GK, Occhipinti LG, Lowe CR (2019) Towards Closed-Loop Integration of Point-of-Care Technologies. Trends Biotechnol 37(7): 775–788. https://doi.org/10.1016/j.tibtech.2018.12.004
  59. Ganzer PD, Sharma G (2019) Opportunities and challenges for developing closed-loop bioelectronic medicines. Neural Regen Res 14(1): 46–50. https://doi.org/10.4103/1673-5374.243697
  60. Wickramasuriya DS, Amin MR, Faghih RT (2019) Skin Conductance as a Viable Alternative for Closing the Deep Brain Stimulation Loop in Neuropsychiatric Disorders. Front Neurosci 13: 780. https://doi.org/10.3389/fnins.2019.00780
  61. Jung J, Lee DW, Son YK, Kim BS, Shin HC (2021) Volitional EMG Estimation Method during Functional Electrical Stimulation by Dual-Channel Surface EMGs. Sensors (Basel) 21(23): 8015. https://doi.org/10.3390/s21238015
  62. Quadt L, Critchley HD), Garfinkel SN (2018) The neurobiology of interoception in health and disease. Ann N Y Acad Sci 1428(1): 112–128. https://doi.org/10.1111/nyas.13915
  63. Gentsch A, Sel A, Marshall AC, Schütz-Bosbach S (2019) Affective interoceptive inference: Evidence from heart-beat evoked brain potentials. Hum Brain Mapp 40(1): 20–33. https://doi.org/10.1002/hbm.24352
  64. Gibson J (2019) Mindfulness, Interoception, and the Body: A Contemporary Perspective. Front Psychol 10: 2012. https://doi.org/10.3389/fpsyg.2019.02012
  65. Khalsa SS, Adolphs R, Cameron OG, Critchley HD, Davenport PW, Feinstein JS, Feusner JD, Garfinkel SN, Lane RD, Mehling WE, Meuret AE, Nemeroff CB, Oppenheimer S, Petzschner FH, Pollatos O, Rhudy JL, Schramm LP, Simmons WK, Stein MB, Stephan KE, Van den Bergh O, Van Diest I, von Leupoldt A, Paulus MP (2018) Interoception and Mental Health: A Roadmap. Biol Psychiatry Cogn Neurosci Neuroimaging 3(6): 501–513. https://doi.org/10.1016/j.bpsc.2017.12.004
  66. Добрушина ОР, Добрынина ЛА, Арина ГА, Кремнева ЕИ, Суслина АД, Губанова МВ, Белопасова АВ, Солодчик ПО, Уразгильдеева ГР, Кротенкова МВ (2020) Взаимосвязь интероцептивного восприятия и эмоционального интеллекта: функциональное нейровизуализационное исследование. Журн высш нервн деят им ИП Павлова 70(2): 206–216. [Dobrushina OR, Dobrynina LA, Arina GA, Kremneva EI, Suslina AD, Gubanova MV, Belopasova AV, Solodchik PO, Urazgildeeva GR, Krotenkova MV (2020) Relationship between interoceptive perception and emotional intelligence: a functional neuroimaging study. Zh Vyssh Nerv Deiat Im IP Pavlova 70(2): 206–216. (In Russ)]. https://doi.org/10.31857/S0044467720020069
  67. Fedotchev AI, Parin SB, Polevaya SA, Zemlyanaya AA (2021) Human body rhythms in the development of non-invasive methods of closed-loop adaptive neurostimulation. J Pers Med 11: 437. https://doi.org/10.3390/jpm11050437
  68. Fedotchev AI (1996) Endogenous body rhythms as a modulating factor for parameters of stimulation. Biophysics 41(3): 718–722.
  69. Li S, Davis M, Frontera JE, Li S (2016) A novel nonpharmacological intervention - breathing-controlled electrical stimulation for neuropathic pain management after spinal cord injury - a preliminary study. J Pain Res 9: 933–940. https://doi.org/10.2147/JPR.S115901
  70. Karri J, Li S, Zhang L, Chen YT, Stampas A, Li S (2018) Neuropathic pain modulation after spinal cord injury by breathing-controlled electrical stimulation (BreEStim) is associated with restoration of autonomic dysfunction. J Pain Res 11: 2331–2341. https://doi.org/10.2147/JPR.S174475
  71. Karri J, Li S, Chen YT, Stampas A, Li S (2021) Observations of Autonomic Variability Following Central Neuromodulation for Chronic Neuropathic Pain in Spinal Cord Injury. Neuromodulation 24(3): 427–433. https://doi.org/10.1111/ner.12979
  72. Yu B, Funk M, Hu J, Feijs L (2018) Unwind: A musical biofeedback for relaxation assistance. Behav Inf Technol 37: 800–814. https://doi.org/10.1080/0144929X.2018.1484515
  73. Koenig T, Smailovic U, Jelic V (2020) Past, present and future EEG in the clinical workup of dementias. Psychiatry Res Neuroimaging 306: 111182. https://doi.org/10.1016/j.pscychresns.2020.111182
  74. Jangwan NS, Ashraf GM, Ram V, Singh V, Alghamdi BS, Abuzenadah AM, Singh MF (2022) Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects. Front Syst Neurosci 16: 1000495. https://doi.org/10.3389/fnsys.2022.1000495
  75. Ketz N, Jones AP, Bryant NB, Clark VP, Pilly PK (2018) Closed-Loop Slow-Wave tACS Improves Sleep-Dependent Long-Term Memory Generalization by Modulating Endogenous Oscillations. J Neurosci 38(33): 7314–7326. https://doi.org/10.1523/JNEUROSCI.0273-18.2018
  76. Mansouri F, Shanbour A, Mazza F, Fettes P, Zariffa J, Downar J (2019) Effect of Theta Transcranial Alternating Current Stimulation and Phase-Locked Transcranial Pulsed Current Stimulation on Learning and Cognitive Control. Front Neurosci 13: 1181. https://doi.org/10.3389/fnins.2019.01181
  77. Ngo HV, Seibold M, Boche DC, Mölle M, Born J (2019) Insights on auditory closed-loop stimulation targeting sleep spindles in slow oscillation up-states. J Neurosci Methods 316: 117–124. https://doi.org/10.1016/j.jneumeth.2018.09.006
  78. Debellemanière E, Pinaud C, Schneider J, Arnal PJ, Casson AJ, Chennaoui M, Galtier M, Navarrete M, Lewis PA (2022) Optimising sounds for the driving of sleep oscillations by closed-loop auditory stimulation. J Sleep Res 31(6): e13676. https://doi.org/10.1111/jsr.13676
  79. Ruch S, Schmidig FJ, Knüsel L, Henke K (2022) Closed-loop modulation of local slow oscillations in human NREM sleep. Neuroimage 264: 119682. https://doi.org/10.1016/j.neuroimage.2022.119682
  80. Zrenner B, Zrenner C, Gordon PC, Belardinelli P, McDermott EJ, Soekadar SR, Fallgatter AJ, Ziemann U, Müller-Dahlhaus F (2020) Brain oscillation-synchronized stimulation of the left dorsolateral prefrontal cortex in depression using real-time EEG-triggered TMS. Brain Stimul 13(1): 197–205. https://doi.org/10.1016/j.brs.2019.10.007
  81. Faller J, Doose J, Sun X, Mclntosh JR, Saber GT, Lin Y, Teves JB, Blankenship A, Huffman S, Goldman RI, George MS, Brown TR, Sajda P (2022) Daily prefrontal closed-loop repetitive transcranial magnetic stimulation (rTMS) produces progressive EEG quasi-alpha phase entrainment in depressed adults. Brain Stimul 15(2): 458–471.https://doi.org/10.1016/j.brs.2022.02.008
  82. Pino O (2021) A randomized controlled trial (RCT) to explore the effect of audio-visual entrainment among psychological disorders. Acta Biomed 92(6): e2021408. https://doi.org/10.23750/abm.v92i6.12089
  83. Константинов КВ, Леонова МЛ, Мирошников ДБ, Клименко ВМ (2014) Особенности восприятия акустического образа собственной биоэлектрической активности головного мозга. Рос физиол журн им ИМ Сеченова 100(6): 710–721. [Konstantinov KV, Leonova ML, Miroshnikov DB, Klimenko VM (2014) Peculiarities of perception of the acoustic image of the own bioelectrical activity of the brain. Russ J Physiol 100(6): 710–721. (In Russ)].
  84. Константинов КВ, Леонова МЛ, Клименко ВМ (2015) Зависимость динамики в диапазоне тета-волн от временной задержки и уровня согласованности предъявления акустического образа собственной ЭЭГ. Рос физиол журн им ИМСеченова 101(4): 381–491. [Konstantinov KV, Leonova ML, Klimenko VM (2015) Dependence of dynamics in the range of theta waves on the time delay and the level of consistency in the presentation of the acoustic image of one’s own EEG. Russ J Physiol 101(4): 381–491. (In Russ)].
  85. Иванова ВА, Кормушкина ЕА (2021) Применение метода биоакустической коррекции в реабилитации детей раннего возраста с расстройствами аутистического спектра. Физическая и реабилит мед 3(1): 48–53. [Ivanova VA, Kormushkina EA (2021) Application of the method of bioacoustic correction in the rehabilitation of young children with autism spectrum disorders. Fizicheskaya i Reabilit Med 3(1): 48–53. (In Russ)]. https://doi.org/10.26211/2658-4522-2021-3-1-48-53
  86. Щегольков АМ, Алехнович АВ, Тимергазина ЭЗ, Дыбов МД, Массальский РИ (2022) Влияние биоакустической коррекции на процесс медицинской реабилитации больных с последствиями преходящих цереброваскулярных нарушений (обзор). Госпит мед: наука и практика 5(4): 46–49. [Shchegolkov AM, Alekhnovich AV, Timergazina EZ, Dybov MD, Massal’skii RI (2022) Influence of bioacoustic correction on the process of medical rehabilitation of patients with consequences of transient cerebrovascular disorders (review). Gospit Med: Nauka I Praktika 5(4): 46–49. (In Russ)]. https://doi.org/10.34852/GM3CVKG.2022.17.46.009
  87. Tegeler CL, Gerdes L, Shaltout HA, Cook JF, Simpson SL, Lee SW, Tegeler CH (2017) Successful use of closed-loop allostatic neurotechnology for post-traumatic stress symptoms in military personnel: self-reported and autonomic improvements. Mil Med Res 4(1): 38. https://doi.org/10.1186/s40779-017-0147-0
  88. Tegeler CL, Shaltout HA, Lee SW, Simpson SL, Gerdes L, Tegeler CH (2020) Pilot Trial of a Noninvasive Closed-Loop Neurotechnology for Stress-Related Symptoms in Law Enforcement: Improvements in Self-Reported Symptoms and Autonomic Function. Glob Adv Health Med 9: 2164956120923288. https://doi.org/10.1177/2164956120923288
  89. Shaltout HA, Lee SW, Tegeler CL, Hirsch JR, Simpson SL, Gerdes L, Tegeler CH (2018) Improvements in Heart Rate Variability, Baroreflex Sensitivity, and Sleep After Use of Closed-Loop Allostatic Neurotechnology by a Heterogeneous Cohort. Front Public Health 6: 116. https://doi.org/10.3389/fpubh.2018.00116
  90. Tegeler CL, Munger Clary H, Shaltout HA, Simpson SL, Gerdes L, Tegeler CH (2023) Cereset Research Standard Operating Procedures for Insomnia: A Randomized, Controlled Clinical Trial. Glob Adv Integr Med Health 12: 27536130221147475. https://doi.org/10.1177/27536130221147475
  91. Fedotchev A, Radchenko G, Zemlianaia A (2018) On one approach to health protection: Music of the brain. J Integr Neurosci 17(3–4): 309–315. https://doi.org/10.3233/JIN-170053
  92. Fedotchev AI, Bondar’ AT, Bakhchina AV, Parin SB, Polevaya SA, Radchenko GS (2017) Effects of Musical Acoustic Signals Controlled by the Subject’s EEG Oscillators. Neurosci Behav Physiol 47(1): 47–51. https://doi.org/10.1007/s11055-016-0365-z
  93. Fedotchev AI, Zemlyanaya AA, Savchuk LV, Polevaya SA (2019) Neurointerface with Double Feedback from Subject’s EEG for Correction of Stress-induced States. Sovrem Tehnol Med 11(1): 150–154. https://doi.org/10.17691/stm2019.11.1.17
  94. Fedotchev AI, Parin SB, Polevaya SA, Zemlyanaya AA (2022) EEG-based Musical Neurointerfaces in the Correction of Stress-induced States. Brain-Computer Interfaces 9(1): 1–6. https://doi.org/10.1080/2326263X2021.1964874
  95. Mukhina EA, Polevaya SA, Parin SB, Fedotchev AI (2021) Cognitive rehabilitation of patients with acute cerebrovascular accident using EEG-guided adaptive neurostimulation. Opera Med Physiol 8(4): 90–96.
  96. Fedotchev AI, Parin SB, Polevaya SA (2021) Adaptive Neurostimulation Methods in Correcting Posttraumatic Stress Disorder and Profeccional Burnout Syndrome. Opera Med Physiol 8(2): 68–74. https://doi.org/10.24412/2500-2021-2-68-74
  97. Polevaya SA, Parin SB, Zemlyanaya AA, Fedotchev AI (2022) Dynamics of EEG reactions under combination of resonance scanning and adaptive neurostimulation in patients with post-COVID syndrome. Opera Med Physiol 9(2): 103–109. https://doi.org/10.24412/2500-2295-2022-2-103-109
  98. Fedotchev AI (2022) Closed-Loop Adaptive Neurostimulation Technologies in Cognitive Rehabilitation of High-Tech Specialists. Sovrem Tehnol Med 14(4): 34–40.https://doi.org/10.17691/stm2022.14.4.04
  99. Krauss JK, Lipsman N, Aziz T, Boutet A, Brown P, Chang JW, Davidson B, Grill WM, Hariz MI, Horn A, Schulder M, Mammis A, Tass PA, Volkmann J, Lozano AM (2021) Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol 17(2): 75–87. https://doi.org/10.1038/s41582-020-00426-z
  100. Frey J, Cagle J, Johnson KA, Wong JK, Hilliard JD, Butson CR, Okun MS, de Hemptinne C (2022) Past, Present, and Future of Deep Brain Stimulation: Hardware, Software, Imaging, Physiology and Novel Approaches. Front Neurol 13: 825178. https://doi.org/10.3389/fneur.2022.825178
  101. De Ridder D, Maciaczyk J, Vanneste S (2021) The future of neuromodulation: smart neuromodulation. Expert Rev Med Devices 18(4):307–317. https://doi.org/10.1080/17434440.2021.1909470
  102. Neumann WJ, Gilron R, Little S, Tinkhauser G (2023) Adaptive Deep Brain Stimulation: From Experimental Evidence Toward Practical Implementation. Mov Disord. https://doi.org/10.1002/mds.29415
  103. Chandrabhatla AS, Pomeraniec IJ, Horgan TM, Wat EK, Ksendzovsky A (2023) Landscape and future directions of machine learning applications in closed-loop brain stimulation. NPJ Digit Med 6(1): 79. https://doi.org/10.1038/s41746-023-00779-x
  104. Takeuchi Y, Berényi A (2020) Oscillotherapeutics – Time-targeted interventions in epilepsy and beyond. Neurosci Res 152: 87–107. https://doi.org/10.1016/j.neures.2020.01.002
  105. Földi T, Lőrincz ML, Berényi A (2021) Temporally Targeted Interactions With Pathologic Oscillations as Therapeutical Targets in Epilepsy and Beyond. Front Neural Circuits 15: 784085. https://doi.org/10.3389/fncir.2021.784085
  106. Takeuchi Y, Li Q, Kawano T, Nagai J, Mima T (2022) Editorial: Oscillotherapeutics - toward real-time control of pathological oscillations in the brain. Front Behav Neurosci 16: 1021616. https://doi.org/10.3389/fnbeh.2022.1021616
  107. Poltorak A (2021) Replicating Cortical Signatures May Open the Possibility for “Transplanting” Brain States via Brain Entrainment. Front Hum Neurosci 15: 710003.https://doi.org/10.3389/fnhum.2021.710003
  108. Федотчев АИ, Журавлев ГИ, Ексина КИ, Силантьева ОМ, Полевая СА (2018) Оценка эффективности музыкального ЭЭГ нейроинтерфейса с дополнительным контуром управления от сердечного ритма. Рос физиол журн им ИМ Сеченова 104(1): 122–128. [Fedotchev AI, Zhuravlev GI, Eksina KI, Silant’eva OM, Polevaya SA (2018) Evaluation of the effectiveness of the musical EEG neural interface with an additional control loop from the heart rate. Russ J Physiol 104(1): 122–128. (In Russ)].
  109. Федотчев АИ, Парин СБ, Громов КН, Савчук ЛВ, Полевая СА (2019) Комплексная обратная связь от биопотенциалов мозга и сердца в коррекции стресс-индуцированных состояний. Журн высш нервн деят им ИП Павлова 69(2): 187–193. [Fedotchev AI, Parin SB, Gromov KN, Savchuk LV, Polevaya SA (2019) Complex feedback from the biopotentials of the brain and heart in the correction of stress-induced conditions. Zh Vyssh Nerv Deiat Im IP Pavlova 69(2): 187–193. (In Russ)]. https://doi.org/10.1134/S0044467719020059
  110. Fedotchev AI, Parin SB, Polevaya SA, Zemlianaia AA (2019) Effects of Audio–Visual Stimulation Automatically Controlled by the Bioelectric Potentials from Human Brain and Heart. Human Physiol 45(5): 523–526. https://doi.org/10.1134/S0362119719050025
  111. Savchuk LV, Polevaya SA, Parin SB, Bondar AT, Fedotchev AI (2022) Resonance Scanning and Analysis of the Electroencephalogram in Determining the Maturity of Cortical Rhythms in Younger Schoolchildren. Biophysics 67(2): 274–280. https://doi.org/10.1134/S000635092202018X
  112. Fedotchev A, Parin S, Polevaya S (2023) Resonance scanning as an efficiency enhancer for EEG-guided adaptive neurostimulation. Life 13: 620. https://doi.org/10.3390/life13030620

Declaração de direitos autorais © А.И. Федотчев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies