The Effect of Prolonged Emotional and Painful Stress on the Expression of Proinflammatory Cytokine Genes in Rats with High and Low Excitability of the Nervous System

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Stress plays an important role in the pathogenesis of anxiety and depressive disorders. Neuroinflammation is considered as one of the mechanisms by which stress alters the molecular and cellular plasticity in the nervous tissue, which leads to a violation of the functions of the central nervous system. The contribution of genetically determined features of the nervous system to the development of post-stress neuroinflammation has not been sufficiently studied. In this study, the dynamics of poststress changes in the mRNA levels of the il1ß and tnf genes of proinflammatory cytokines interleukin-1-beta (IL-1ß) and tumor necrosis factor (TNF) in the blood and in the brain in two rat strains with high and low excitability thresholds of the nervous system (HT and LT) was evaluated. Changes in IL-1ß and TNF mRNA levels were assessed by real-time PCR 24 h, 7, 24 and 60 days after prolonged emotional and painful stress in the blood and three brain structures involved in the development of post-stress pathology (prefrontal cortex, hippocampus, amygdala). In highly excitable rats of the LT strain, the level of IL-1ß mRNA in the hippocampus and amygdala increased compared to the control 24 days after the end of stress, in low-excitable animals of the HT strain, an increase in the level of IL-1ß mRNA was detected only in the hippocampus at the same time. The TNF mRNA level did not change in any of the strains at any of the time points after stress. Genetically determined excitability of the nervous system is a promising marker of individual vulnerability to stress, manifested in post-stress disorders associated with the characteristics of the formation and dynamics of neuroinflammation.

Авторлар туралы

I. Shalaginova

Immanuel Kant Baltic Federal University

Хат алмасуға жауапты Автор.
Email: shalaginova_i@mail.ru
Russia, Kaliningrad

O. Tuchina

Immanuel Kant Baltic Federal University

Email: shalaginova_i@mail.ru
Russia, Kaliningrad

A. Turkin

Immanuel Kant Baltic Federal University

Email: shalaginova_i@mail.ru
Russia, Kaliningrad

A. Vylegzhanina

Immanuel Kant Baltic Federal University

Email: shalaginova_i@mail.ru
Russia, Kaliningrad

A. Nagumanova

Immanuel Kant Baltic Federal University

Email: shalaginova_i@mail.ru
Russia, Kaliningrad

T. Zachepilo

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: shalaginova_i@mail.ru
Russia, Saint-Petersburg

M. Pavlova

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: shalaginova_i@mail.ru
Russia, Saint-Petersburg

N. Dyuzhikova

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: shalaginova_i@mail.ru
Russia, Saint-Petersburg

Әдебиет тізімі

  1. Simpson HB, Neria Y, Lewis-Fernández R, Schneier F (2010) Anxiety disorders: Theory, research and clinical perspectives. Cambridge University Press.
  2. Котова ОВ, Беляев АА, Акарачкова ЕС (2021) Современные методы диагностики и лечения тревожных и депрессивных расстройств. РМЖ Мед обозр 5(10): 648–653. [Kotova OV, Belyaev AA, Akarachkova EU (2021) Modern methods of diagnosis and treatment of anxiety and depressive disorders. Breast cancer. Med obozr 5(10):648–653. (In Russ)]. https://doi.org/10.32364/2587-6821-2021-5-10-648-653
  3. Boldrini M, Canoll PD, Klein RS (2021) How COVID-19 affects the brain. JAMA Psychiatry 78(6): 682–683.
  4. Baharikhoob P, Kolla NJ (2020) Microglial dysregulation and suicidality: a stress-diathesis perspective. Front Psychiatry 11: 781.
  5. DiSabato DJ, Quan N, Godbout JP (2016) Neuroinflammation: the devil is in the details. J Neurochem 139: 136–153. https://doi.org/10.1111/jnc.13607
  6. Vandevyver S, Dejager L, Tuckermann J, Libert C (2013) New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology 154(3): 993–1007. https://doi.org/10.1210/en.2012-2045
  7. Sorrells SF, Sapolsky RM (2007) An inflammatory review of glucocorticoid actions in the CNS. Brain Behav Immun 21(3): 259–272. https://doi.org/10.1016/J.BBI.2006.11.006
  8. Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nature Rev Immunol 16(1): 22–34. https://doi.org/10.1038/nri.2015.5
  9. Toben C, Baune BT (2018) The Roles of T Cells in Clinical Depression. In Inflammat Immun Depress (pp. 115–133). Acad Press. https://doi.org/10.1016/B978-0-12-811073-7.00007-6.
  10. Wohleb ES, Delpech JC (2017) Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Progr Neuro-Psychopharmacol Biol Psychiatry 79: 40–48. https://doi.org/10.1016/j.pnpbp.2016.04.013
  11. Binder MR (2021) Neuronal hyperexcitability: significance, cause, and diversity of clinical expression. Am J Clin Exp Med 9(5): 157–167. https://doi.org/10.11648/j.ajcem.20210905.16
  12. Вайдо АИ, Ширяева НВ, Павлова МБ, Левина АС, Хлебаева ДА, Любашина ОА, Дюжикова НА (2018) Селектированные линии крыс с высоким и низким порогом возбудимости: модель для изучения дезадаптивных состояний, зависимых от уровня возбудимости нервной системы. Лаб жив научн исслед (3): 12–22. [Vaido A, Shiryaeva N, Pavlova M, Levina A, Khlebaeva D, Lyubashina O, Dyuzhikova NA (2018) Selected rat strains HT, LT as a model for the study of dysadaptation states dependent on the level of excitability of the nervous system. Laboratory Anim Sci 205. (In Russ)]. https://doi.org/10.29296/2618723x-2018-03-02
  13. Shalaginova IG, Tuchina OP, Sidorova MV, Levina AS, Khlebaeva DA, Vaido AI, Dyuzhikova NA (2021) Effects of psychogenic stress on some peripheral and central inflammatory markers in rats with the different level of excitability of the nervous system. PloS One 16(7):e0255380. https://doi.org/10.1371/journal.pone.0255380
  14. Dinkel K, MacPherson A, Sapolsky RM (2003) Novel glucocorticoid effects on acute inflammation in the CNS. J Neurochem 84(4): 705–716. https://doi.org/10.1046/j.1471-4159.2003.01604.x
  15. De Pablos RM, Villaran RF, Argüelles S, Herrera AJ, Venero JL, Ayala A, Machado A. (2006) Stress increases vulnerability to inflammation in the rat prefrontal cortex. J Neurosci 26(21):5709–5719. https://doi.org/10.1523/JNEUROSCI.0802-06.2006
  16. Munhoz,CD, Lepsch LB, Kawamoto EM, Malta MB, de Sá Lima L, Avellar MC, Scavone C (2006) Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-κB in the frontal cortex and hippocampus via glucocorticoid secretion. J Neurosci 26(14): 3813–3820. https://doi.org/10.1523/JNEUROSCI.4398-05.2006
  17. Dantzer R (2018) Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol Rev 98(1): 477–504. https://doi.org/10.1152/physrev.00039.2016
  18. Beattie E C, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFα. Science 295(5563): 2282–2285. https://doi.org/10.1126/science.1067859
  19. Lewitus GM, Pribiag H, Duseja R, St-Hilaire M, Stellwagen D (2014). An adaptive role of TNFα in the regulation of striatal synapses. J Neurosci 34(18): 6146–6155. https://doi.org/10.1523/JNEUROSCI.3481-13.2014
  20. Jing H, Hao Y, Bi Q, Zhang J, Yang P (2015) Intra-amygdala microinjection of TNF-α impairs the auditory fear conditioning of rats via glutamate toxicity. Neurosci Res 91: 34–40. https://doi.org/10.1016/j.neures.2014.10.015
  21. Sivachenko IB, Pavlova MB, Vaido AI, Shiryaeva NV, Panteleev SS, Dyuzhikova NA, Lyubashina OA (2021) Spike activity and genome instability in neurons of the amygdaloid complex in rats of selected strains with contrasting nervous system arousability in normal conditions and stress. Neurosci Behav Physiol 51(5): 620–628.
  22. Альперина ЕЛ, Жукова ЕН (2019) Содержание цитокинов в структурах мозга крыс с различным уровнем генетически обусловленной агрессии. Мед акад журн 19(S): 9–10. [Alperina EL, Zhukova EN (2019) Cytokine content within brain structures in rats with genetic predisposition to different levels of aggression. Med Acad J 19(1S): 9–10. (In Russ)].
  23. Noumbissi ME, Galasso B, Stins MF (2018) Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood–brain barrier models. Fluids Barr CNS 15(1): 1–12. https://doi.org/10.1186/s12987-018-0097-2

Қосымша файлдар


© И.Г. Шалагинова, О.П. Тучина, А.В. Туркин, А.Э. Вылегжанина, А.Н. Нагуманова, Т.Г. Зачепило, М.Б. Павлова, Н.А. Дюжикова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>