Changes in Behavioral Characteristics and Tyrosine Hydroxylase Levels in the Nucleus Accumbens of the Brain of DAT-HET Rats during Free Alcoholization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

DAT-HET rats with their underlying hyperdopaminergia are a promising model for the investigation of neuropsychiatric diseases, which are based on impaired dopamine neurotransmission, including alcoholism. The aim of the work was to evaluate the effect of free alcoholization on drinking, locomotor, exploratory behavior, anxiety, and Tyrosine hydroxylase (TH) levels in rats with impaired functioning of the DA system (DAT-HET). The study was carried out on adult male rats of the DAT-HET (n = 15) and Wistar (n = 13), which were divided into 4 groups: “DAT-HET ethanol” (n = 10) and “Wistar ethanol” (n = 9), who were in the mode of free alcoholization for 112 days of the experiment. The DAT-HET water (n = 5) and Wistar water (n = 4) groups did not have access to an ethanol solution and did not participate in behavioral tests. Ethanol preference and consumption was assessed in the “Two-bottle test”. The amount of ethanol consumed in the cells was recorded weekly. Behavior was assessed using the Open Field and Elevated Plus Maze tests. After alcoholization, to assess the level of TH, an immunohistochemical (IHC). It was found that during free alcoholization, DAT-HET rats do not form preferences for ethanol. Under the low ethanol consumption, the initial hyperactivity in DAT-HET rats is leveled. The DAT-HET model leads to an increase in TH levels in NAcc. In addition, the free alcoholization reduces the level of TG in NAcc with the development of a pathological increase in TH, observed in the DAT-HET model, but has no effect on healthy animals.

About the authors

I. V. Antonova

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: risha.irina999@mail.ru
Russia, St. Petersburg

E. O. Kucher

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; St. Petersburg State University

Email: risha.irina999@mail.ru
Russia, St. Petersburg; Russia, St. Petersburg

E. V. Filatova

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: risha.irina999@mail.ru
Russia, St. Petersburg

A. E. Veraksa

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: risha.irina999@mail.ru
Russia, St. Petersburg

I. Yu. Morina

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: risha.irina999@mail.ru
Russia, St. Petersburg

V. A. Zavyalov

St. Petersburg State University

Email: risha.irina999@mail.ru
Russia, St. Petersburg

A. Yu. Egorov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; St. Petersburg State University; Mechnikov North-Western State Medical University

Email: risha.irina999@mail.ru
Russia, St. Petersburg; Russia, St. Petersburg; Russia, St. Petersburg

References

  1. Jörgen AE, Jerlhag E (2014) Alcohol: mechanisms along the mesolimbic dopamine system. Prog Brain Res 211: 201–233. https://doi.org/10.1016/B978-0-444-63425-2.00009-X
  2. Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40: 191–225. https://doi.org/10.1146/annurev.ps.40.020189.001203
  3. Dunkley PR, Bobrovskaya L, Graham M, von Nagy-Felsobuki EI, Dickson WP (2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 91: 1025–1043. https://doi.org/10.1111/j.1471-4159.2004.02797.x
  4. Daubner CS, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508: 1–12. https://doi.org/10.1016/j.abb.2010.12.017
  5. Leo D, Sukhanov I, Zoratto F, Illiano P, Caffino L, Sanna F, Messa G, Emanuele M, Esposito A, Dorofeikova M, Budygin EA, Mus L, Efimova EV, Niello M, Espinoza S, Sotnikova TD, Hoener MC, Laviola G, Fumagalli F, Adriani W, Gainetdinov RR (2018) Pronounced Hyperactivity, Cognitive Dysfunctions, and BDNF Dysregulation in Dopamine Transporter Knock-out Rats. J Neurosci 38(8): 1959–1972. https://doi.org/10.1523/JNEUROSCI.1931-17.2018
  6. Gainetdinov AR, Fesenko ZS, Khismatullina ZR (2020) Behavioural Changes in Heterozygous Rats by Gene Knockout of the Dopamine Transporter (DAT). J Biomed 16 (1): 82–88. https://doi.org/10.33647/2074-5982-16-1-82-88
  7. Conte R, Zangirolame C, Gobbo RD, Pereira L DA S, Panfilio CE, Reginato R, Maluf LS, Scerni DA, Céspedes IC (2022) Effects of moderate alcohol consumption on behavior and neural systems of Wistar rats. An Acad Bras Ciênc 94(3): e20210673. https://doi.org/10.1590/0001-3765202220210673
  8. Rothblat DS, Rubin E, Schneider JS (2001) Effects of chronic alcohol ingestion on the mesostriatal dopamine system in the rat. Neurosci Lett 300(2): 63–66. https://doi.org/10.1016/S0304-3940(01)01548-8
  9. Ericson M, Ulenius L, Andrén A, Jonsson S, Adermark L, Söderpalm B (2020) Different dopamine tone in ethanol high- and low-consuming Wistar rats. Addict Biol 25(3): e12761. https://doi.org/10.1111/adb.12761
  10. Fu R, Zuo W, Shiwalkar N, Mei Q, Fan Q, Chen X, Li J, Bekker A, Ye JH (2019) Alcohol withdrawal drives depressive behaviors by activating neurons in the rostromedial tegmental nucleus. Neuropsychopharmacology 44(8): 1464–1475. https://doi.org/10.1038/s41386-019-0378-8
  11. Van Erp A MM, Miczek KA (2007) Increased accumbal dopamine during daily alcohol consumption and subsequent aggressive behavior in rats. Psychopharmacology (Berl) 191(3): 679–688. https://doi.org/10.1007/s00213-006-0637-3
  12. Hall FS, Sora I, Uhl GR (2003) Sex-dependent modulation of ethanol consumption in vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT) knockout mice. Neuropsychopharmacology 28: 620–628. https://doi.org/10.1038/sj.npp.1300070
  13. Jiao X, Paré WP, Tejani-Butt SM (2006) Alcohol consumption alters dopamine transporter sites in Wistar-Kyoto rat brain. Brain Res (1073-1074): 175–182. https://doi.org/10.1016/j.brainres.2005.12.009
  14. Masserano JM, Takimoto GS, Weiner N (1983) Tyrosine hydroxylase activity in the brain and adrenal gland of rats following chronic administration of ethanol. Alcohol Clin Exp Res 7(3): 294–298. https://doi.org/10.1111/j.1530-0277.1983.tb05463.x
  15. Ortiz J, Fitzgerald WL,Charlton M, Lane S, Trevisan L, Guitart X, Shoemaker W, Duman RS, Nestler EJ (1995) Biochemical actions of chronic ethanol exposure in the mesolimbic dopamine system. Synapse 21(4): 289–298. https://doi.org/10.1002/syn.890210403
  16. Spiga S, Talani G, Mulas G, Licheri V, Fois GR, Muggironi G, Masala N, Cannizzaro C, Biggio G, Sanna E, Diana M (2014) Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats. Proc Natl Acad Sci U S A 111(35): 3745–3754. https://doi.org/10.1073/pnas.1406768111
  17. Антонова ИВ, Веракса АЕ, Егоров АЮ (2020) Особенности полупринудительной алкоголизации у крыс гетерозигот по нокауту гена дофаминового транспортера (DАT-HET): Пилотное исследование. Вопр наркол 10: 5–15. [Antonova IV, Veraksa AE, Egorov AU (2020) Features of semi-forced alcoholization in rats heterozygous for dopamine transporter gene knockout (DAT-HET): A pilot study. Addict Issues 10: 5–15. (In Russ)]. https://doi.org/10.47877/0234-0623_2020_10_5
  18. Paxinos GT, Watson Ch (1998) The rat brain in stereotaxic coordinates. (Fourth Edition). Acad Press. San Diego, California. USA. Int Standard Book Number: 0-12-547617-5 CD-ROM. http://www.apnet.com
  19. Mikhrina AL, Saveleva LO, Alekseeva OS, Romanova IV (2020) Effects of Active Fragments AgRP 83–132 and 25-51 on Dopamine Biosynthesis in the Brain. Neurosci Behav Physiol 50(3):367–373. https://doi.org/10.1007/s11055-020-00908-z
  20. Savelieva VK, Caudle MW, Findlay SG, Caron MG, Miller GW (2002) Decreased ethanol preference and consumption in dopamine transporter female knock-out mice. Alcohol Clin Exp Res 26(6): 758–764.
  21. Майский АИ, Салимов РМ (1999) Доклиническое изучение препаратов, предлагаемых для клинической апробации в качестве средств для лечения алкоголизма. Вед фармакол комитета 2: 26–31. [Maisky AI, Salimov RM (1999) Preclinical research of drugs proposed for clinical validation as a treatment for alcoholism. Bull Pharmacol Commit 2: 26–31. (In Russ)].
  22. Угрюмов МВ (1999) Механизмы нейроэндокринной регуляции. М. Нaукa. 82–122. [Ugryumov MV (1999) Mechanisms of neuroendocrine regulation. M. Nauka. 82–122. (In Russ)].
  23. Beaulieu JM, Gainetdinov RR (2011) The Physiology, Signaling, and Pharmacology of Dopamine Receptors. Pharmacol Rev 63(1): 182–217. https://doi.org/10.1124/pr.110.002642
  24. Brooks DJ (2016) Molecular imaging of dopamine transporters. Age Res Rev 30: 114–121. https://doi.org/10.1016/j.arr.2015.12.009

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (79KB)
3.

Download (86KB)
4.

Download (105KB)
5.

Download (139KB)
6.

Download (1MB)
7.

Download (57KB)

Copyright (c) 2023 И.В. Антонова, Е.О. Кучер, Е.В. Филатова, А.Е. Веракса, И.Ю. Морина, В.А. Завьялов, А.Ю. Егоров

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies