Features of Changes in the Velocity Indicators of Cerebral Blood Flow in Rats at Different Stages of Aging

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Changes in the velocity of cerebral blood flow can make a significant contribution to the formation of age-related cerebrovascular diseases. The age-related changes in the velocity indicators of cerebral blood flow in rats at different stages of aging were studied. Using Doppler ultrasound the state of blood flow in the cortex and subcortical structures of the cerebral hemispheres was analyzed by the value of linear velocities and blood flow indexes in young Sprague-Dawley 4-month-old and aging 18 and 23-month-old rats. It has been established that aging is accompanied by changes in the parameters of cerebral blood flow in the cortex and subcortical structures of the rat brain. Changes develop gradually and differ at different stages of aging. By 18 months, perfusion in the frontal and parietal regions hemispheres of the brain increases due to an increase in peak and mean velocity per cardiac cycle and a decrease in the level of resistance of cerebral vessels. These processes precede the development of subsequent hypoperfusion disorders of blood flow observed at later stages of aging. Hypoperfusion changes in 23-month-old rats are most pronounced in the frontal region of the cerebral hemispheres and are characterized by a decrease in peak velocities and an increase in blood flow indexes.

Негізгі сөздер

Авторлар туралы

O. Gorshkova

Pavlov Institute of Physiology of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: o_gorshkova@inbox.ru
Russia, St. Petersburg

Әдебиет тізімі

  1. Iadecola C (2013) The pathobiology of vascular dementia. Neuron 80(4): 844–866. https://doi.org/10.1016/j.neuron.2013.10.008
  2. De Silva TM, Faraci FM (2016) Microvascular dysfunction and cognitive impairment. Cell Mol Neurobiol 36: 241–258. https://doi.org/10.1007/s10571-015-0308-1
  3. Wang N, Allali G, Kesavadas C, Noone ML, Pradeep VG, Blumen HM, Verghese J (2015) Cerebral small vessel disease and motoric cognitive risk syndrome: results from the Kerala-Einstein Study. J Alzheimers Dis 50: 699–707. https://doi.org/10.3233/JAD-150523
  4. Fulop GA, Tarantini S, Yabluchanskiy A, Molnar A, Prodan CI, Kiss T, Csipo T, Lipecz A, Balasubramanian P, Farkas E, Toth P, Sorond F, Csiszar A, Ungvari Z (2019) Role of age-related alterations of the cerebral venous circulation in the pathogenesis of vascular cognitive impairment. Am J Physiol Heart Circ Physiol 316(5): H1124–H1140. https://doi.org/10.1152/ajpheart.00776.2018
  5. Diaz-Otero JM, Garver H, Fink GD, Jackson WF, Dorrance AM (2016) Aging is associated with changes to the biomechanical properties of the posterior cerebral artery and parenchymal arterioles. Am J Physiol Heart Circ Physiol 310(3): H365–H375. https://doi.org/10.1152/ajpheart.00562.2015
  6. Kalaria RN (2012) Cerebrovascular disease and mechanisms of cognitive impairment: evidence from clinicopathological studies in humans. Stroke 43(9): 2526–2534. https://doi.org/10.1161/STROKEAHA.112.655803
  7. Staffaroni AM, Cobigo Y, Elahi FM, Casaletto KB, Walters SM, Wolf A, Lindbergh CA, Rosen HJ, Kramer JH (2019) A longitudinal characterization of perfusion in the aging brain and associations with cognition and neural structure. Hum Brain Mapp 40(12): 3522–3533. https://doi.org/10.1002/hbm.24613
  8. Toth P, Tarantini S, Csiszar A, Ungvari Z (2017) Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol 312(1): H1–H20. https://doi.org/10.1152/ajpheart.00581.2016
  9. Hshieh TT, Dai W, Cavallari M, Guttmann CR, Meier DS, Schmitt EM, Dickerson BC, Press DZ, Marcantonio ER, Jones RN, Gou YR, Travison TG, Fong TG, Ngo L, Inouye SK, Alsop DC, SAGES Study Group (2017) Cerebral blood flow MRI in the nondemented elderly is not predictive of post-operative delirium but is correlated with cognitive performance. J Cereb Blood Flow Metab 37(4): 1386–1397. https://doi.org/10.1177/0271678X16656014
  10. Aanerud J, Borghammer P, Chakravarty MM, Vang K, Rodell AB, Jónsdottir KY, Møller A, Ashkanian M, Vafaee MS, Iversen P, Johannsen P, Gjedde A (2012) Brain energy metabolism and blood flow differences in healthy aging. J Cereb Blood Flow Metab 32(7): 1177–1187. https://doi.org/10.1038/jcbfm.2012.18
  11. Nemati M, Bavil AS, Taheri N (2009) Comparison of normal values of Duplex indices of vertebral arteries in young and elderly adults. Cardiovasc Ultrasound 7: 2. https://doi.org/10.1186/1476-7120-7-2
  12. Zhang N, Gordon ML, Goldberg TE (2017) Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer’s disease. Neurosci Biobehav Rev 72: 168–175. https://doi.org/10.1016/j.neubiorev.2016.11.023
  13. Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM (2021) Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 101(4): 1487–1559. https://doi.org/1010.1152/physrev.00022.2020
  14. Филатова ОВ, Сидоренко АА (2015) Возрастные и половые особенности гемодинамических характеристик артерий головного мозга. Acta Biol Sibirica 3–4. [Filatova OV, Sidorenko AA (2015) Age and sex characteristics of hemodynamic characteristics of cerebral arteries. Acta Biol Sibirica 3–4. (In Russ)].
  15. Alwatban MR, Aaron SE, Kaufman CS, Barnes JN, Brassard P, Ward JL, Miller KB, Howery AJ, Labrecque L, Billinger SA (2021) Effects of age and sex on middle cerebral artery blood velocity and flow pulsatility index across the adult lifespan. J Appl Physiol 130(6): 1675–1683. https://doi.org/10.1152/japplphysiol.00926.2020
  16. Gorshkova OP (2022) Age-related changes in the indices of cerebral blood flow velocity in rats. J Evol Biochem Phys 58(3): 894–900. https://doi.org/10.1134/S0022093022030231
  17. Chen JJ, Rosas HD, Salat DH (2013) The relationship between cortical blood flow and sub-cortical white-matter health across the adult age span. PLoS One 8(2): e56733. https://doi.org/10.1371/journal.pone.0056733
  18. Mander BA, Rao V, Lu B, Saletin JM, Lindquist JR, Ancoli-Israel S, Jagust W, Walker MP (2014) Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat Neurosci 16: 357–364. https://doi.org/10.1038/nn.3324
  19. Oh H, Madison C, Villeneuve S, Markley C, Jagust WJ (2014) Association of gray matter atrophy with age, β-amyloid, and cognition in aging. Cereb Cortex 24: 1609–1618. https://doi.org/10.1093/cercor/bht017
  20. Heyer EJ, Mergeche JL, Connolly ES Jr (2014) Middle cerebral artery pulsatility index and cognitive improvement after carotid endarterectomy for symptomatic stenosis. J Neurosurg 120(1): 126–131. https://doi.org/10.3171/2013.8.JNS13931
  21. Albina G, Fernandez Cisneros L, Laiño R, Nobo UL, Ortega D, Schwarz E, Barja L, Lagos R, Giniger A, Ameriso SF (2004) Trancranial Doppler monitoring during head upring tilt table testing in patient with suspected neurocardiogenie syncope. Europace 6(1): 63–69. https://doi.org/10.1016/j.eupc.2003.09.009
  22. Guan J, Zhang S, Zhou Q, Li C, Lu Z (2013) Usefulness of transcranial Doppler ultrasound in evaluating cervical-cranial collateral circulations. Interv Neurol 2(1): 8–18. https://doi.org/10.1159/000354732
  23. Faber JE, Zhang H, Lassance-Soares RM, Prabhakar P, Najafi AH, Burnett MS, Epstein SE (2011) Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues. Arterioscler Thromb Vasc Biol 31(8): 1748–1756. https://doi.org/10.1161/ATVBAHA.111.227314
  24. Sharma VK, Tsivgoulis G, Lao AY, Malkoff MD, Alexandrov AV (2007) Noninvasive detection of diffuse intracranial disease. Stroke 38(12): 3175–3181. https://doi.org/10.1161/STROKEAHA.107.490755
  25. Vagli C, Fisicaro F, Vinciguerra L, Puglisi V, Rodolico MS, Giordano A, Ferri R, Lanza G, Bella R (2020) Cerebral Hemodynamic Changes to Transcranial Doppler in Asymptomatic Patients with Fabry’s Disease. Brain Sci 10(8): 546. https://doi.org/10.3390/brainsci10080546
  26. Wierenga CE, Hays CC, Zlatar ZZ (2014) Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer’s disease. J Alzheimers Dis 42: S411–S419. https://doi.org/10.3233/JAD-141467
  27. Ghaffari M, Alaraj A, Du X, Zhou XJ, Charbel FT, Linninger AA (2018) Quantification of near-wall hemodynamic risk factors in large-scale cerebral arterial trees. Int J Numer Method Biomed Eng 34(7): e2987. https://doi.org/10.1002/cnm.2987
  28. O’Rourke MF, Safar ME (2005) Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 46: 200–204. https://doi.org/10.1161/01.HYP.0000168052.00426.65
  29. Moore SM, Zhang H, Maeda N, Doerschuk CM, Faber JE (2015) Cardiovascular risk factors cause premature rarefaction of the collateral circulation and greater ischemic tissue injury. Angiogenesis 18(3): 265–281. https://doi.org/10.1007/s10456-015-9465-6.0.1007/s10456-015-9465-6
  30. Young AP, Zhu J, Bagher AM, Denovan-Wright EM, Howlett SE, Kelly MEM (2021) Endothelin B receptor dysfunction mediates elevated myogenic tone in cerebral arteries from aged male Fischer 344 rats. Geroscience 43(3): 1447–1463. https://doi.org/10.1007/s11357-020-00309-7

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (99KB)
3.

Жүктеу (45KB)
4.

Жүктеу (56KB)

© О.П. Горшкова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>