Vol 30, No 4 (2022)

Articles

Jacques Hadamard (1865-1963) - is the legend of mathematics and of absent-mindedness

Trubetskov D.I.

Abstract

This editorial is based on Hadamard's own statements and various recollections of him.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(4):387-390
pages 387-390 views

Reconstruction of integrated equations of periodically driven phase-locked loop system from scalar time series

Sysoeva M.V., Kornilov M.V., Takaishvili L.V., Matrosov V.V., Sysoev I.V.

Abstract

Purpose of this work is to develop a reconstruction technique for the equations of a phase-locked loop system under periodic external driving from a scalar time series of one variable. Methods. Instead of the original model, we reconstructed a time-integrated model. So, since it is not necessary to evaluate the second derivative of the observable numerically, the method sensitivity to observation noise has significantly decreased. The external periodic driving is approximated with a trigonometric polynomial of time, the antiderivative of which is also a trigonometric polynomial. The assumption about continuity of an unknown nonlinear function is used to construct the target function for optimization. Results. It is shown that the proposed approach gives a significant advantage over the previously developed approach to the reconstruction of non-integrated equations, allowing to achieve acceptable parameter estimates with measurement noise being about 10% of the RMS deviation of the signal even in the presence of external driving. Conclusion. The described approach significantly extends the possibilities of reconstruction of phase-locked loop systems, allowing systems to be reconstructed under arbitrary periodic driving and at the same time significantly increasing noise resistance.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(4):391-410
pages 391-410 views

Variational approach to the construction of discrete mathematical model of the pendulum motion with vibrating suspension with friction

Savchin V.M., Trinh P.T.

Abstract

The main purpose of this work is, first, a construction of the indirect Hamilton’s variational principle for the problem of motion of a pendulum with a vibration suspension with friction, oscillating along a straight line making a small angle with the vertical line. Second, the construction on its basis of the difference scheme. Third, to carry out its investigation by methods of numerical analysis. Methods. The problem of motion of the indicated pendulum is considering as a particular case of the given boundary problem for a nonlinear second order differential equations. For the solution of problem of its variational formulation there is used the criterion of potentiality of operators — the symmetry of the Gateaux derivative of nonlinear operator of the given problem. This criterion is also used for the construction of variational multiplier and the corresponding Hamilton’s variational principle. On its basis there is constructed and investigated a discrete analog of the given boundary problem and a problem of motion of the pendulum. Results. It is proved that the operator of the given boundary problem is not potential with respect to the classical bilinear form. There is found a variational multiplier and constructed the corresponding indirect Hamilton’s variational principle. On its basis there is obtained a discrete analog of the given boundary problem and its solution is found. As particular cases one can deduce from that the corresponding results for the problem of motion of the pendulum. There are performed numerical experiments, establishing the dependence of solutions of the problem of motion of the pendulum on the change of parameters. Conclusion. There is worked out a variational approach to the construction of two difference schemes for the problem of a pendulum with a suspension with friction, oscillating along a straight line making a small angle with the vertical line. There are presented results of numerical simulation under different parameters of the problem. Numerical results show that under sufficiently small amplitude and sufficiently big frequency of the oscillations of the point of suspension the pendulum realizes a periodical motion.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(4):411-423
pages 411-423 views

On the conditions for safe connection to hub-cluster power grids

Khramenkov V.A.

Abstract

Purpose of this work is studying of the dynamics of a power grid model that results from the expansion of a highly centralized grid, i.e. a hub-cluster, by adding a small subgrid. The main attention is paid to the study of possible power grid operation regimes and their characteristics. Methods. Numerical simulation of power grid operation, the dynamics of which is described by the Kuramoto equations with inertia, is used. Results. Various power grid operation regimes and the boundaries of their existence in the parameter space are given. The main characteristics of these regimes, such as the probability of realization and the magnitude of oscillations of regime variables, are considered. The conditions for safe connection to hub-cluster power grids are obtained. Conclusion. The dynamics of power grid consisting of two subgrids and its operation regimes are considered. Based on the characteristics of these regimes, their safety for subgrids is determined. The results obtained made it possible to formulate conditions for a safe connection to hub-cluster power grids.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(4):424-435
pages 424-435 views

Modeling of adaptive counteraction of the induced biotic environment during the invasive process

Perevaryukha A.Y.

Abstract

Purpose is to develop a mathematical model for the analysis of a variant in the development of a population process with a non-trivially regulated confrontation between an invading species and a biotic environment. Relevance. The situation we are studying arises in invasive processes, but is a previously unexplored special variant of their development. The task of modeling is to describe the transition to a deep ν-shaped crisis after intensive growth. The model is based on examples of the adaptive dynamics of a bacterial colony and the suppression of mollusk populations, carriers of dangerous parasitic diseases, after targeted anti-epidemic introduction of their antagonists. Methods. In our work equations with a retarded argument in the range of parameter values that have a biological interpretation were studied. The model uses a logarithmic form of species regulation, taking into account the theoretically permissible capacity of the medium. In the equation we included the function of external influence with flexible threshold regulation relative to the current and previous population size. Results. It is shown that the proposed form of impact regulation leads to the formation of a stable adapted population after the crisis, which does not have a destructive impact on the habitat. With an increase in the reproductive potential of an invasive species, a deep crisis becomes critically dangerous. The form of the crisis passage depends on the reproductive potential, on the size of the initial group of individuals, and also on the time of activation of the adaptive counteraction from the environment. It is established that at a sufficient level of resistance, a non destructive equilibrium is established. Conclusion. The actual scenario of sudden depression of an actively spreading population with a large reproductive r-parameter, which is caused by the delayed activity of its natural antagonists, has been studied. The threshold form of biotic regulation is characteristic of insects, the abundance of which is regulated by competing species of parasitic hymenoptera. The variant of rapid phase change considered by us in the model is relevant as a description of one of the forms of developing the body’s immune response to the development of an acute infection with a significant delay. If the immune response is prematurely inhibited by the body itself, then the chronic focus of the disease persists. Examples of the dynamics of two real biological processes in experiments with biological suppression methods are given, which correspond to the invasion scenario obtained in the new model.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(4):436-455
pages 436-455 views

Nonlinear elite generation change model

Kolesnikov A.V., Malinetskii G.G., Podlazov A.V., Sirenko S.N.

Abstract

The purpose of the presented article was to build a concise conceptual mathematical model of the competitive dynamics of alternative types of social activity. The model was developed in the form of a discrete two-dimensional non-linear mapping. The proposed mapping is new and has not been previously studied either in the field of mathematical social dynamics (sociophysics), or in the section of discrete models of nonlinear dynamics. The approach we used corresponds to the ideas of the theory of social time put forward by F. Braudel. Nonlinear two-dimensional mapping, in a paradoxical way, given the general socio-economic ideas about the relationship between generations, as it turned out, has a Hamiltonian structure. The analysis showed that both formally and in terms of qualitative behavior it is close to the standard model describing a rotator under the action of impacts. It was found that, depending not only on the parameters of the problem, but also on the initial conditions, in this case, periodic, quasiperiodic, and chaotic dynamics are simultaneously possible. Within the framework of the model, this means a great variety of intergenerational relationships. Thus, the data in the system will not be "forgotten". The influence on the dynamics of the model of "dissipative additions" describing the degradation of the elite, the desire of society to “eliminate the best” is demonstrated. The dynamics of the system and its dependence on parameters become much simpler; nevertheless, cyclicity and multistability do not disappear in it. In this approximation, history turns out to be “local” — the details and peculiarities of society’s behavior will be "forgotten" after several generations. The study of the constructed model opens up great prospects for the analysis of various types of cyclical processes in mathematical history.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(4):456-479
pages 456-479 views

Postulates of the cognitive theory of thinking and their consequences

Antonets V.A.

Abstract

Purpose of the work is to create a theoretical model of the thinking process, considered as a set of operations for the formation of cognitive generalizations of the level of categories (concepts). Method for creating a theoretical model is based on the approach used in natural sciences. It involves the selection of a small number of reliable facts, which are accepted as true on the basis of their evidence. On the basis of these facts, established in various scientific disciplines, the axioms of the proposed theory are formulated. Further, from the accepted axioms, they are logically deduced in the form of consequences: a) already known results that could be obtained in various fields of science, including those differing in the content of research, and therefore previously perceived as not related to each other; b) predictions of new connections and patterns in the study area. Results of the work are that it was possible to propose a version of the postulate dynamic theory of thinking, in which the main variables are the number of concepts formed, lost, realized and unconscious by the subject. The introduced postulates and variables made it possible to consider two types of models at the moment. Balanced integrodifferential models that describe the accumulation of the volume of conscious and unconscious concepts, as well as combinatorial models that describe the interactions of concepts. Conclusion. The proposed version of the dynamic thinking model made it possible to construct reasonable theoretical descriptions of the process of spontaneous language acquisition by bilingual children in a bilingual environment and a person’s ability to compare semantically heterogeneous objects with each other. The logical scheme of the approach and the concepts used in it made it possible to connect some facts known in psychology and in an explicitly compact formulation of the difference in the structure of scientific and artistic generalizations of the picture of the world.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(4):480-494
pages 480-494 views

Estimation of impulse action parameters using a network of neuronlike oscillators

Navrotskaya E.V., Kulminskiy D.D., Ponomarenko V.I., Prokhorov M.D.

Abstract

Aim of the study is to develop a method for estimating the parameters of an external periodic impulse action using a spiking network of neuronlike oscillators. Methods. The spiking activity of a network consisting of coupled nonidentical neuronlike FitzHugh–Nagumo oscillators was studied, depending on the parameters of the periodic impulse action. To estimate the amplitude of the external impulse signal, we detuned the FitzHugh–Nagumo oscillators, which were in a stable state of equilibrium in the absence of an external action, by the threshold parameter responsible for the excitation of the oscillator. To estimate the frequency of excitatory pulses, we detuned the FitzHugh–Nagumo oscillators by the parameter characterizing the ratio of time scales, the value of which determines the natural frequency of oscillators. We also changed the duration of external pulses. Results. It is shown that the number of spikes generated by a network of nonidentical FitzHugh–Nagumo oscillators has a monotonic dependence on the amplitude of the external pulse signal and a nonmonotonic dependence on the frequency of the pulse signal. The number of spikes generated by the network remains constant over a wide range of external pulse durations. A method for estimating the amplitude and frequency of impulse action is proposed. The method efficiency is demonstrated in numerical simulations and in a radio physical experiment. Conclusion. The proposed method allows one to estimate the amplitude of an external pulse signal, knowing its frequency, and estimate the frequency of this signal, knowing its amplitude. The method can be used in robotics when solving the problems of information processing related to the motion control of mobile robots. 
Izvestiya VUZ. Applied Nonlinear Dynamics. 2022;30(4):495-512
pages 495-512 views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies