Estimation of impulse action parameters using a network of neuronlike oscillators

Cover Page

Cite item

Full Text

Abstract

Aim of the study is to develop a method for estimating the parameters of an external periodic impulse action using a spiking network of neuronlike oscillators. Methods. The spiking activity of a network consisting of coupled nonidentical neuronlike FitzHugh–Nagumo oscillators was studied, depending on the parameters of the periodic impulse action. To estimate the amplitude of the external impulse signal, we detuned the FitzHugh–Nagumo oscillators, which were in a stable state of equilibrium in the absence of an external action, by the threshold parameter responsible for the excitation of the oscillator. To estimate the frequency of excitatory pulses, we detuned the FitzHugh–Nagumo oscillators by the parameter characterizing the ratio of time scales, the value of which determines the natural frequency of oscillators. We also changed the duration of external pulses. Results. It is shown that the number of spikes generated by a network of nonidentical FitzHugh–Nagumo oscillators has a monotonic dependence on the amplitude of the external pulse signal and a nonmonotonic dependence on the frequency of the pulse signal. The number of spikes generated by the network remains constant over a wide range of external pulse durations. A method for estimating the amplitude and frequency of impulse action is proposed. The method efficiency is demonstrated in numerical simulations and in a radio physical experiment. Conclusion. The proposed method allows one to estimate the amplitude of an external pulse signal, knowing its frequency, and estimate the frequency of this signal, knowing its amplitude. The method can be used in robotics when solving the problems of information processing related to the motion control of mobile robots. 

About the authors

Elena Vladimirovna Navrotskaya

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Danil Dmitrievich Kulminskiy

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ul. Zelyonaya, 38, Saratov, 410019, Russia

Vladimir Ivanovich Ponomarenko

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ul. Zelyonaya, 38, Saratov, 410019, Russia

Mihail Dmitrievich Prokhorov

Saratov Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences

ul. Zelyonaya, 38, Saratov, 410019, Russia

References

  1. Haykin S. Neural Networks and Learning Machines. Upper Saddle River, New Jersey: Prentice Hall, 2009. 906 p.
  2. Ripley B. D. Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press, 1996. 403 p. doi: 10.1017/CBO9780511812651.
  3. Egmont-Petersen M., de Ridder D., Handels H. Image processing with neural networks - a review // Pattern Recognition. 2002. Vol. 35, no. 10. P. 2279-2301. doi: 10.1016/S0031- 3203(01)00178-9.
  4. Dwarakish G. S., Rakshith S., Natesan U. Review on applications of neural network in coastal engineering // Artificial Intelligent Systems and Machine Learning. 2013. Vol. 5, no. 7. P. 324-331.
  5. Frolov N., Maksimenko V., Luttjohann A., Koronovskii A., Hramov A. Feed-forward artificial neural network provides data-driven inference of functional connectivity // Chaos. 2019. Vol. 29, no. 9. P. 091101. doi: 10.1063/1.5117263.
  6. Hramov A. E., Maksimenko V. A., Pisarchik A. N. Physical principles of brain-computer interfaces and their applications for rehabilitation, robotics and control of human brain states // Phys. Rep. 2021. Vol. 918. P. 1-133. doi: 10.1016/j.physrep.2021.03.002.
  7. McCulloch W. S., Pitts W. A logical calculus of the ideas immanent in nervous activity // Bulletin of Mathematical Biophysics. 1943. Vol. 5, no. 4. P. 115-133. doi: 10.1007/BF02478259.
  8. Rabinovich M. I., Varona P., Selverston A. I., Abarbanel H. D. I. Dynamical principles in neuroscience // Rev. Mod. Phys. 2006. Vol. 78, no. 4. P. 1213-1265. doi: 10.1103/RevModPhys.78.1213.
  9. Дмитричев А. С., Касаткин Д. В., Клиньшов В. В., Кириллов С.Ю., Масленников О. В., Щапин Д. С., Некоркин В. И. Нелинейные динамические модели нейронов: Обзор // Известия вузов. ПНД. 2018. Т. 26, № 4. C. 5-58. doi: 10.18500/0869-6632-2018-26-4-5-58.
  10. Quiroga R. Q., Panzeri S. Principles of Neural Coding. Boca Raton: CRC Press, 2013. 663 p. doi: 10.1201/b14756.
  11. Yu D., Deng L. Automatic Speech Recognition: A Deep Learning Approach. London: Springer, 2015. 321 p. doi: 10.1007/978-1-4471-5779-3.
  12. Hossain M. S., Muhammad G. Emotion recognition using deep learning approach from audio-visual emotionalbig data // Information Fusion. 2019. Vol. 49. P. 69-78. doi: 10.1016/j.inffus.2018.09.008.
  13. Kasabov N. K. Evolving Connectionist Systems: The Knowledge Engineering Approach. London: Springer, 2007. 451 p. doi: 10.1007/978-1-84628-347-5.
  14. Lobov S., Mironov V., Kastalskiy I., Kazantsev V. A spiking neural network in sEMG feature extraction // Sensors. 2015. Vol. 15, no. 11. P. 27894-27904. doi: 10.3390/s151127894.
  15. Virgilio C. D., Sossa J. H., Antelis J. M., Falcon L. E. Spiking Neural Networks applied to the classification of motor tasks in EEG signals // Neural Netw. 2020. Vol. 122. P. 130-143. doi: 10.1016/j.neunet.2019.09.037.
  16. Lobov S. A., Chernyshov A. V., Krilova N. P., Shamshin M. O., Kazantsev V. B. Competitive learning in a spiking neural network: Towards an intelligent pattern classifier // Sensors. 2020. Vol. 20, no. 2. P. 500. doi: 10.3390/s20020500.
  17. Wang X., Hou Z.-G., Lv F., Tan M., Wang Y. Mobile robots’ modular navigation controller using spiking neural networks // Neurocomputing. 2014. Vol. 134. P. 230-238. 10.1016/j.neucom. 2013.07.055.
  18. Chou T.-S., Bucci L. D., Krichmar J. L. Learning touch preferences with a tactile robot using dopamine modulated STDP in a model of insular cortex // Front. Neurorobot. 2015. Vol. 9. P. 6. doi: 10.3389/fnbot.2015.00006.
  19. Bing Z., Meschede C., Rohrbein F., Huang K., Knoll A. C. A survey of robotics control based on learning-inspired spiking neural networks // Front. Neurorobot. 2018. Vol. 12. P. 35. doi: 10.3389/fnbot.2018.00035.
  20. Lobov S. A., Mikhaylov A. N., Shamshin M., Makarov V. A., Kazantsev V. B. Spatial properties of STDP in a self-learning spiking neural network enable controlling a mobile robot // Front. Neurosci. 2020. Vol. 14. P. 88. doi: 10.3389/fnins.2020.00088.
  21. Croisier H., Dauby P. C. Continuation and bifurcation analysis of a periodically forced excitable system // J. Theor. Biol. 2007. Vol. 246, no. 3. P. 430-448. doi: 10.1016/j.jtbi.2007.01.017.
  22. Феоктистов А. В., Анищенко В. С. Динамика системы ФитцХью-Нагумо под внешним периодическим воздействием // Известия вузов. ПНД. 2011. Т. 19, № 5. С. 35-44. doi: 10.18500/0869-6632-2011-19-5-35-44.
  23. Novikov N., Gutkin B. Role of synaptic nonlinearity in persistent firing rate shifts caused by external periodic forcing // Phys. Rev. E. 2020. Vol. 101, no. 5. P. 052408. doi: 10.1103/PhysRevE.101.052408.
  24. Eidum D. M., Henriquez C. S. Modeling the effects of sinusoidal stimulation and synaptic plasticity on linked neural oscillators // Chaos. 2020. Vol. 30, no. 3. P. 033105. doi: 10.1063/1.5126104.
  25. Рой М., Новиков Н. А., Захаров Д. Г., Гуткин Б. С. Взаимодействие между ультрамедленными флуктуациями нейронных сетей префронтальной коры и колебаниями мозга // Известия вузов. ПНД. 2020. Т. 28, № 1. С. 90-97. doi: 10.18500/0869-6632-2020-28-1-90-97.
  26. Andreev A. V., Ivanchenko M. V., Pisarchik A. N., Hramov A. E. Stimulus classification using chimera-like states in a spiking neural network // Chaos, Solitons & Fractals. 2020. Vol. 139. P. 110061. doi: 10.1016/j.chaos.2020.110061.
  27. Пономаренко В. И., Кульминский Д. Д., Андреев А. В., Прохоров М. Д. Оценка амплитуды внешнего периодического воздействия при помощи малой спайковой нейронной сети в радиофизическом эксперименте // Письма в ЖТФ. 2021. Т. 47, № 4. С. 7-10. doi: 10.21883/PJTF.2021.04.50636.18529.
  28. Bezruchko B. P., Smirnov D. A. Constructing nonautonomous differential equations from experimental time series // Phys. Rev. E. 2001. Vol. 63, no. 1. P. 016207. doi: 10.1103/PhysRevE.63.016207.
  29. Смирнов Д. А., Сысоев И. В., Селезнев Е. П., Безручко Б. П. Реконструкция моделей неавтономных систем с дискретным спектром воздействия // Письма в ЖТФ. 2003. Т. 29, № 19. С. 69-76.
  30. Яхно Ю. В., Мольков Я. И., Мухин Д. Н., Лоскутов Е. М., Фейгин А. М. Реконструкция оператора эволюции как способ анализа электрической активности мозга при эпилепсии // Известия вузов. ПНД. 2011. Т. 19, № 6. С. 156-172. doi: 10.18500/0869-6632-2011-19-6-156-172.
  31. Сысоева М. В., Пономаренко В. И., Прохоров М. Д., Сысоев И. В. Реконструкция систем с запаздыванием под внешним периодическим воздействием // Нелинейная динамика. 2013. Т. 9, № 4. С. 613-625. doi: 10.20537/nd1304001.
  32. Dahlem M. A., Hiller G., Panchuk A., Scholl E. Dynamics of delay-coupled excitable neural systems // Int. J.Bifurc.Chaos. 2009. Vol. 19, no. 2. P. 745-753. doi: 10.1142/S0218127409023111.
  33. Plotnikov S. A., Lehnert J., Fradkov A. L., Scholl E. Adaptive control of synchronization in delay-coupled heterogeneous networks of FitzHugh-Nagumo nodes // Int. J. Bifurc. Chaos. 2016. Vol. 26, no. 4. P. 1650058. doi: 10.1142/S0218127416500589.
  34. Lindner B., Garc´ia-Ojalvo J., Neiman A., Schimansky-Geier L. Effects of noise in excitable systems // Phys. Rep. 2004. Vol. 392, no. 6. P. 321-424. doi: 10.1016/j.physrep.2003.10.015.
  35. Tass P. A. Phase Resetting in Medicine and Biology: Stochastic Modelling and Data Analysis. Berlin: Springer, 1999. 329 p. doi: 10.1007/978-3-540-38161-7.
  36. Holt A. B., Kormann E., Gulberti A., Potter-Nerger M., McNamara C. G., Cagnan H., Baaske M. K., Little S., Koppen J. A., Buhmann C., Westphal M., Gerloff C., Engel A. K., Brown P., Hamel W., Moll C. K. E., Sharott A. Phase-dependent suppression of beta oscillations in Parkinson’s disease patients // J. Neurosci. 2019. Vol. 39, no. 6. P. 1119-1134. doi: 10.1523/JNEUROSCI.1913- 18.2018.
  37. Mau E. T. K., Rosenblum M. Optimizing charge-balanced pulse stimulation for desynchronization // Chaos. 2022. Vol. 32, no. 1. P. 013103. doi: 10.1063/5.0070036.
  38. Kulminskiy D. D., Ponomarenko V. I., Prokhorov M. D., Hramov A. E. Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators // Nonlinear Dyn. 2019. Vol. 98, no. 1. P. 735-748. doi: 10.1007/s11071-019-05224-x.
  39. Кульминский Д. Д., Пономаренко В. И., Сысоев И. В., Прохоров М. Д. Новый подход к экспериментальному исследованию больших ансамблей радиотехнических генераторов со сложными связями // Письма в ЖТФ. 2020. Т. 46, № 4. С. 26-29. doi: 10.21883/PJTF.2020.04.49046.18018.
  40. Щапин Д. С. Динамика двух нейроноподобных элементов с подавляющей обратной связью // Радиотехника и электроника. 2009. Т. 54, № 2. С. 185-195.
  41. Sysoev I. V., Prokhorov M. D., Ponomarenko V. I., Bezruchko B. P. Reconstruction of ensembles of coupled time-delay systems from time series // Phys. Rev. E. 2014. Vol. 89, no. 6. P. 062911. doi: 10.1103/PhysRevE.89.062911.
  42. Kurkin S. A., Kulminskiy D. D., Ponomarenko V. I., Prokhorov M. D., Astakhov S. V., Hramov A. E. Central pattern generator based on self-sustained oscillator coupled to a chain of oscillatory circuits // Chaos. 2022. Vol. 32, no. 3. P. 033117. doi: 10.1063/5.0077789.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies