On the conditions for safe connection to hub-cluster power grids
- Авторлар: Khramenkov V.A.1
-
Мекемелер:
- Institute of Applied Physics of the Russian Academy of Sciences
- Шығарылым: Том 30, № 4 (2022)
- Беттер: 424-435
- Бөлім: Articles
- URL: https://journals.rcsi.science/0869-6632/article/view/252109
- DOI: https://doi.org/10.18500/0869-6632-2022-30-4-424-435
- EDN: https://elibrary.ru/CGKJXX
- ID: 252109
Дәйексөз келтіру
Толық мәтін
Аннотация
Негізгі сөздер
Авторлар туралы
Vladislav Khramenkov
Institute of Applied Physics of the Russian Academy of Sciencesul. Ul'yanova, 46, Nizhny Novgorod , 603950, Russia
Әдебиет тізімі
- Жданов П. С. Вопросы устойчивости электрических систем. М.: Энергия, 1979. 456 с.
- Хрущев Ю. В., Заподовников К. И., Юшков А.Ю. Электромеханические переходные процессы в электроэнергетических сетях: учебное пособие. Томск: Изд-во Томского политехнического университета, 2012. 160 с.
- Sauer P. W., Pai M. A. Power System Dynamics and Stability. Englewood Cliffs: Prentice-Hall, 1998. 361 p.
- Witthaut D., Timme M. Braess’s paradox in oscillator networks, desynchronization and power outage // New J. Phys. 2012. Vol. 14, no. 8. P. 083036. doi: 10.1088/1367-2630/14/8/083036.
- Manik D., Timme M., Witthaut D. Cycle flows and multistability in oscillatory networks // Chaos. 2017. Vol. 27, no. 8. P. 083123. doi: 10.1063/1.4994177.
- Coletta T., Jacquod P. Linear stability and the Braess paradox in coupled-oscillator networks and electric power grids // Phys. Rev. E. 2016. Vol. 93, no. 3. P. 032222. doi: 10.1103/PhysRevE.93.032222.
- Tchuisseu E. B. T., Gomila D., Colet P., Witthaut D., Timme M., Schafer B. Curing Braess’ paradox by secondary control in power grids // New J. Phys. 2018. Vol. 20, no. 8. P. 083005. doi: 10.1088/1367-2630/aad490.
- Witthaut D., Timme M. Nonlocal failures in complex supply networks by single link additions // Eur. Phys. J. B. 2013. Vol. 86, no. 9. P. 377. doi: 10.1140/epjb/e2013-40469-4.
- Grzybowski J. M. V., Macau E. E. N., Yoneyama T. Power-grids as complex networks: Emerging investigations into robustness and stability // In: Edelman M., Macau E., Sanjuan M. (eds) Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives. Understanding Complex Systems. Cham: Springer, 2018. P. 287-315. doi: 10.1007/978-3-319-68109-2_14.
- Filatrella G., Nielsen A. H., Pedersen N. F. Analysis of a power grid using a Kuramoto-like model // Eur. Phys. J. B. 2008. Vol. 61, no. 4. P. 485-491. doi: 10.1140/epjb/e2008-00098-8.
- Rohden M., Sorge A., Timme M., Witthaut D. Self-organized synchronization in decentralized power grids // Phys. Rev. Lett. 2012. Vol. 109, no. 6. P. 064101. doi: 10.1103/PhysRevLett.109.064101.
- Motter A. E., Myers S. A., Anghel M., Nishikawa T. Spontaneous synchrony in power-grid networks // Nat. Phys. 2013. Vol. 9. P. 191-197. doi: 10.1038/nphys2535.
- Fortuna L., Frasca M., Fiore A. S. Analysis of the Italian power grid based on Kuramoto-like model // In: 5th International Conference on Physics and Control (PhysCon 2011). Leon, Spain, 5-8 September 2011. Singapore: World Scientific, 2012. P. 1-5.
- Menck P. J., Heitzig J., Kurths J., Schellnhuber H. J. How dead ends undermine power grid stability // Nat. Commun. 2014. Vol. 5, no. 1. P. 3969. doi: 10.1038/ncomms4969.
- Lozano S., Buzna L., D´iaz-Guilera A. Role of network topology in the synchronization of power systems // Eur. Phys. J. B. 2012. Vol. 85, no. 7. P. 231. doi: 10.1140/epjb/e2012-30209-9.
- Nishikawa T., Motter A. E. Comparative analysis of existing models for power-grid synchronization // New J. Phys. 2015. Vol. 17, no. 1. P. 015012. doi: 10.1088/1367-2630/17/1/015012.
- Schmietendorf K., Peinke J., Friedrich R., Kamps O. Self-organized synchronization and voltage stability in networks of synchronous machines // Eur. Phys. J. Spec. Top. 2014. Vol. 223, no. 12. P. 2577-2592. doi: 10.1140/epjst/e2014-02209-8.
- Дмитричев А. С., Захаров Д. Г., Некоркин В. И. О глобальной устойчивости синхронного режима в хаб-кластерах энергосетей // Известия вузов. Радиофизика. 2017. Т. 60, № 6. С. 564-571.
- Anvari M., Hellmann F., Zhang X. Introduction to Focus Issue: Dynamics of modern power grids // Chaos. 2020. Vol. 30, no. 6. P. 063140. doi: 10.1063/5.0016372.
- Gajduk A., Todorovski M., Kocarev L. Stability of power grids: An overview // Eur. Phys. J. Spec. Top. 2014. Vol. 223, no. 12. P. 2387-2409. doi: 10.1140/epjst/e2014-02212-1.
- Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I. Dynamics and stability of two power grids with hub cluster topologies // Cybernetics and Physics. 2019. Vol. 8, no. 1. P. 29-33. doi: 10.35470/2226- 4116-2019-8-1-29-33.
- Храменков В. А., Дмитричев А. С., Некоркин В. И. Пороговая устойчивость синхронного режима энергосети с топологией хаб-кластера // Известия вузов. ПНД. 2020. Т. 28, № 2. С. 120-139. doi: 10.18500/0869-6632-2020-28-2-120-139.
- Khramenkov V., Dmitrichev A., Nekorkin V. Partial stability criterion for a heterogeneous power grid with hub structures // Chaos, Solitons & Fractals. 2021. Vol. 152. P. 111373. doi: 10.1016/j.chaos.2021.111373.
- Khramenkov V. A., Dmitrichev A. S., Nekorkin V. I. New scenario of Braess’s paradox in power grids // Chaos. 2022 (submitted).
Қосымша файлдар
