Vol 32, No 1 (2024)

Articles

To the anniversary of the Department of Nonlinear Physics of Saratov State University

Beginin E.N., Morozova M.A., Savin A.V.

Abstract

2023 marks the 25th anniversary of the formation of the Department of Nonlinear Physics of Saratov State University. The department has developed and implements training programs on the general course of physics, physics of nonlinear processes, physics of wave processes in magnetic fields and structures.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2024;32(1):5-7
pages 5-7 views

Department of Dynamic Systems of Saratov State University on the basis of the SB IRE RAS — 25 years

Kuznetsov A.P., Ryskin N.M.

Abstract

In 2023, the Department of Dynamic Systems of Saratov State University on the basis of the Saratov branch of the Institute of Radio Engineering and Electronics of the Russian Academy of Sciences turned 25 years old. During this time, the department prepared training courses "Nonlinear oscillations," "Theory of catastrophes," "Dynamic systems and bifurcations," "Dynamic chaos," "Mathematical methods of nonlinear physics" and others. A series of textbooks and taskbooks in the relevant areas has been released.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2024;32(1):8-10
pages 8-10 views

Parametric interaction of modes in the presence of quadratic or cubic nonlinearity

Turukina L.V.

Abstract

The purpose of this work is a study of the dynamics of the systems of ordinary differential equations of the second order, which is obtained using the Lagrange formalism. These systems describe the parametric interaction of oscillators (modes) in the presence of a general quadratic or cubic nonlinearity. Also, we compare the dynamics of the systems of ordinary differential equations of the second order and dynamics of the Vyshkind–Rabinovich and Rabinovich–Fabrikant models in order to determine the possibilities of the latter models when modeling coupled oscillators of the above type. Methods. The study is based on the numerical solution using the methods of the theory of the obtained analytically differential equations. Results. For both systems of second-order differential equations, is was presented a chart of in the parameter plane, a graphs of Lyapunov exponents at the value of the parameter that specifies the dissipation of oscillators, a time dependences of the generalized coordinates of oscillators and its amplitudes, portraits of attractors, a projection of the attractors on a phase planes of oscillators. A comparison with the dynamics of the Vyshkind–Rabinovich and Rabinovich–Fabrikant models is carried out. These models are three-dimensional real approximations of the above systems obtained by the method of slowly varying amplitudes. Conclusion. The study of the constructed systems showed that in the parameter space there are regions corresponding to both various regular regimes, such as the equilibrium position, limit cycle, two-frequency tori, and chaotic regimes. For both systems, it was shown that the transition to chaos occurs as a result of a sequence of period doubling bifurcations of the tori. In addition, a comparison of the dynamics of the constructed systems with the dynamics of the Vyshkind–Rabinovich and Rabinovich–Fabrikant models allows us to assert that if the Vyshkind–Rabinovich model predicts the dynamics of the corresponding initial system well enough, then the Rabinovich–Fabrikant model does not have such a property.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2024;32(1):11-30
pages 11-30 views

Comparative analysis of the secure communication schemes based on the generators of hyperbolic strange attractor and strange nonchaotic attractor

Isaeva O.B., Lubchenko D.O.

Abstract

The purpose of this work is to analyse qualitative features of the information transmission process via several communication schemes based on the synchronization of transmitter and receiver, both being complex signal generators. For this purpose generators of the hyperbolic chaos and generators with the strange nonchaotic attractor are employed. Evaluation of advantages and disadvantages of such schemes is made comparing themselves with each other as well as with schemes based on the nonhyperbolic chaotic generators. Methods. The power spectra and the distributions of the largest finite-time Lyapunov exponent are used to confirm the complexity of the dynamics of the generators in use and to verify the wide-bandness, robustness and stochasticity of their signals. Confidentiality of the informational signal transmission is achieved using its nonlinear mixing to the dynamics of the transmitter. The special phase mixing is used since the model generators employed for the research demonstrate nontrivial dynamics for the angular variable — oscillations phase shift. The digital image is used as an information for transmission. Visual control during the transmission process allows to carry out the qualitative analysis of the success of the signal coding and its detecting by the receiver. Results. Successful transmission and decoding of information for all schemes under investigation are demonstrated for the case of identical transmitter and receiver. Parameter detuning of these generators leads to difficulties in separation of the informational signal from the chaotic/complex carrier due to loss of the full synchronization. For the nonhyperbolic chaos detuning of the parameter responsible for the amplitude of the signal leads to the bad quality of the detection while frequency detuning makes detection absolutely impossible. Schemes with the hyperbolic chaos and strange nonchaotic dynamics appear to demonstrate much better results. The information detection is much better in this case because of the robustness of the generalized synchronization. Conclusion. Robust chaotic and complex nonchaotic generators appear to have significant advantages for communication systems comparing to the chaotic generators of nonhyperbolic type.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2024;32(1):31-41
pages 31-41 views

Synchronization of oscillators with hard excitation coupled with delay Part 1. Phase approximation

Adilova A.B., Ryskin N.M.

Abstract

Aim of this work is to develop the theory of mutual synchronization of two oscillators with hard excitation associated with a delay. Taking into account the delay of a coupling signal is necessary, in particular, when analyzing synchronization at microwave frequencies, when the distance between the oscillators is large compared to the wavelength. Methods. Theoretical analysis is carried out under the assumption that the delay time is small compared to the characteristic time for the oscillations. The phase approximation is used when the frequency mismatch and the coupling parameter are considered small. Results. Taking into account the change in oscillation amplitudes up to first-order terms in the coupling parameter, a generalized Adler equation for the phase difference of the oscillators is obtained, which takes into account the combined type of the coupling (dissipative and conservative coupling) and non-isochronism. The conditions for saddle-node bifurcations are found and the stability of various fixed points of the system is analyzed. The boundaries of the domains of in-phase and anti-phase synchronization are plotted on the plane of the parameters “frequency mismatch – coupling parameter”. Conclusion. It is shown that, depending on the control parameters (non-isochronism parameter, excitation parameter, phase advance of the coupling signal), the system exhibits behavior typical of either dissipative or conservative coupling. The obtained formulas allow for trace the transition from one type of coupling to another when varying the control parameters.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2024;32(1):42-56
pages 42-56 views

Propagation of spin waves in a lattice of laterally and vertically coupled YIG microwaveguides by changing the magnetization angle in linear and nonlinear modes

Khutieva A.B., Grachev A.A., Beginin E.N., Sadovnikov A.V.

Abstract

Purpose. Investigation of the joint manifestation of the effects of anisotropic signal propagation, coupling, and nonlinear power dependence of the medium parameters in a lattice of laterally and vertically coupled spin-wave (SW) microwaveguides. Consideration of the case of the influence of the rotation of the magnetization angle and the change of the lateral gap between microwaveguides located on the same substrate on the transverse profile of the spin-wave beam and the spatial localization of the SW amplitude. Methods. The method of micromagnetic modeling based on the numerical solution of the Landau–Lifshitz–Hilbert equation shows the possibility of controlling the direction of propagation of SW in an ensemble of laterally and vertically coupled iron yttrium garnet (YIG) microwaveguides by changing the magnetization angle. By the method of numerical integration of the system of coupled discrete nonlinear Schrodinger equations, the possibility of changing the transverse profile of the spin-wave beam by changing the level of the initial signal amplitude is shown. Results. The spatial distributions of the components of the dynamic magnetization of the SW excited in two microwaveguides located on the same substrate obtained in micromagnetic simulations indicate a change in the character of localization of the SW power in the output sections of the microwaveguides. At variation of the lattice magnetization angle, a shift of the threshold power value is observed, at which a characteristic curbing of the transverse width of the spin-wave beam in the nonlinear mode appears. Conclusion. When excitation of surface magnetostatic SW in a lattice of laterally and vertically coupled microwaveguides, a transformation of the transverse profile of the wave is observed at a deviation of the magnetization angle of the structure by 15º , which is manifested in the change of the SW length and its localization in each of the microwaveguides. The combined effects of dipole coupling, gyrotropy, and nonlinearity of the medium make it possible to control the value of the threshold power of the SW, at which the mode of diffractionless propagation of the spin-wave beam is realized in a single layer of the structure.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2024;32(1):57-71
pages 57-71 views

Modeling of the Hodgkin–Huxley neural oscillators dynamics using an artificial neural network

Kuptsov P.V., Stankevich N.V.

Abstract

The purpose of this study — to represent a detailed description of the procedure for creating and training a neural network mapping on the example of the dynamics modeling of a neural oscillator of the Hodgkin–Huxley type; to show that the neural network mappings trained for single oscillators can be used as elements of a coupled system that simulate the behavior of coupled oscillators. Methods. Numerical method is used for solving stiff systems of ordinary differential equations. Also a procedure for training neural networks based on the method of back propagation of error is employed together with the Adam optimization algorithm, that is a modified version of the gradient descent supplied with an automatic step adjustment. Results. It is shown that the neural network mappings built according to the described procedure are able to reproduce the dynamics of single neural oscillators. Moreover, without additional training, these mappings can be used as elements of a coupled system for the dynamics modeling of coupled neural oscillator systems. Conclusion. The described neural network mapping can be considered as a new universal framework for complex dynamics modeling. In contrast to models based on series expansion (power, trigonometric), neural network mapping does not require truncating of the series. Consequently, it allows modeling processes with arbitrary order of nonlinearity, hence there are reasons to believe that in some aspects it will be more effective. The approach developed in this paper based on the neural network mapping can be considered as a sort of an alternative to the traditional numerical methods of modeling of dynamics. What makes this approach topical is the current rapid development of technologies for creating fast computing equipment that supports neural network training and operation.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2024;32(1):72-95
pages 72-95 views

Synchronisation of the ensemble of nonidentical FitzHugh–Nagumo oscillators with memristive couplings

Navrotskaya E.V., Kurbako A.V., Ponomarenko V.I., Prokhorov M.D.

Abstract

The aim of the study is to investigate the features of synchronization in ensembles of nonidentical neuron-like FitzHugh–Nagumo oscillators interacting via memristor-based coupling. Methods. The collective dynamics in a ring of FitzHugh–Nagumo oscillators connected via memristive coupling was studied numerically and experimentally. The nonidentity of oscillators was achieved by detuning them by the threshold parameter responsible for the excitation of oscillator, or by detuning them by the parameter characterizing the ratio of time scales, the value of which determines the natural frequency of oscillator. We investigated the synchronization of memristively coupled FitzHugh–Nagumo oscillators as a function of the magnitude of the coupling coefficient, the initial conditions of all variables, and the number of oscillators in the ensemble. As a measure of synchronization, we used a coefficient characterizing the closeness of oscillator trajectories. Results. It is shown that with memristive coupling of FitzHugh–Nagumo oscillators, their synchronization depends not only on the magnitude of the coupling coefficient, but also on the initial states of both the oscillators themselves and the variables responsible for the memristive coupling. We compared the synchronization features of nonidentical FitzHugh–Nagumo oscillators with memristive and diffusive couplings. It is shown that, in contrast to the case of diffusive coupling of oscillators, in the case of meristive coupling, with increasing coupling strength of the oscillators, the destruction of the regime of completely synchronous in-phase oscillations can be observed, instead of which a regime of out-of-phase oscillations appears. Conclusion. The obtained results can be used when solving the problems of synchronization control in ensembles of neuronlike oscillators, in particular, for achieving or destroying the regime of in-phase synchronization of oscillations in an ensemble of coupled oscillators.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2024;32(1):96-110
pages 96-110 views

Influence of nonlinearity on the Bragg resonances in coupled magnon crystals

Lobanov N.D., Matveev O.V., Morozova M.A.

Abstract

Purpose. The purpose of this paper is to investigate the effect of nonlinearity on formation mechanism and characteristics of Bragg resonances in vertically coupled magnon crystals with periodic groove system on the surface. In this paper a wave model is constructed, a nonlinear dispersion relation for surface magnetostatic waves in such a structure is obtained and the characteristics of each of the Bragg resonances are numerically studied with increasing input signal power. Methods. Theoretical methods of investigation of spin-wave excitations in a wide class of structures with ferromagnetic layers have been used. In particular, the following theoretical models have been used: coupled wave method, long-wave approximation. Results. This paper presents the results of a theoretical investigation of the effect of magnetic nonlinearity on Bragg resonances in a sandwich structure based on magnon crystals with periodic grooves on the surface separated by a dielectric layer. A mechanism for the formation of band gaps at the Bragg resonance frequencies in the presence of media nonlinearity has been revealed. It is shown that with increasing input power the frequency interval between the band gaps decreases. With increasing magnetization difference of magnon crystals, the effect of nonlinear convergence is more pronounced. Conclusion. The identified features extend the capabilities of sandwich structures based on magnon crystals for frequency selective signal processing by controlling the frequency selectivity, both via static coupling parameters, periodicity and layer magnetisation, and dynamically via the input signal power.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2024;32(1):111-120
pages 111-120 views

Influence of additive noise on chimera and solitary states in neural networks

Ryabchenko A.D., Rybalova E.V., Strelkova G.I.

Abstract

The purpose of this work is to study numerically the influence of additive white Gaussian noise on the dynamics of a network of nonlocally coupled neuron models which are represented by FitzHugh–Nagumo oscillators. Depending on coupling parameters between the individual elements this network can demonstrate various spatio-temporal structures, such as chimera states, solitary states and regimes of their coexistence (combined structures). These patterns exhibit different responses against additive noise influences. Methods. The network dynamics is explored by calculating and plotting snapshots (instantaneous spatial distributions of the coordinate values at a fixed time), space-time diagrams, projections of multidimensional attractors, mean phase velocity profiles, and spatial distributions (profiles) of cross-correlation coefficient values. We also evaluate the cross-correlation coefficient averaged over the network, the mean number of solitary nodes and the probability of settling spatio-temporal structures in the neuronal network in the presence of additive noise. Results. It has been shown that additive noise can decrease the probability of settling regimes of solitary states and combined structures, while the probability of observing chimera states arises up to 100%. In the noisy network of FitzHugh–Nagumo oscillators exhibiting the regime of solitary states, increasing the noise intensity leads, in general case, to a decrease of the mean number of solitary nodes and the interval of coupling parameter values within which the solitary states are observed. However, there is a finite region in the coupling parameter plane, inside which the number of solitary nodes can grow in the presence of additive noise. Conclusion. We have studied the impact of additive noise on the probability of observing chimera states, solitary states and combined structures, which coexist in the multistability region, in the network of nonlocally coupled FitzHugh–Nagumo neuron models. It has been established that chimera states represent more stable and dominating structures among the other patterns coexisting in the studied network. At the same time, the probability of settling regimes of solitary states only, the region of their existence in the coupling parameter plane and the number of solitary nodes generally decrease when the noise intensity increases.
Izvestiya VUZ. Applied Nonlinear Dynamics. 2024;32(1):121-140
pages 121-140 views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies