Influence of nonlinearity on the Bragg resonances in coupled magnon crystals

Cover Page

Cite item

Full Text

Abstract

Purpose. The purpose of this paper is to investigate the effect of nonlinearity on formation mechanism and characteristics of Bragg resonances in vertically coupled magnon crystals with periodic groove system on the surface. In this paper a wave model is constructed, a nonlinear dispersion relation for surface magnetostatic waves in such a structure is obtained and the characteristics of each of the Bragg resonances are numerically studied with increasing input signal power. Methods. Theoretical methods of investigation of spin-wave excitations in a wide class of structures with ferromagnetic layers have been used. In particular, the following theoretical models have been used: coupled wave method, long-wave approximation. Results. This paper presents the results of a theoretical investigation of the effect of magnetic nonlinearity on Bragg resonances in a sandwich structure based on magnon crystals with periodic grooves on the surface separated by a dielectric layer. A mechanism for the formation of band gaps at the Bragg resonance frequencies in the presence of media nonlinearity has been revealed. It is shown that with increasing input power the frequency interval between the band gaps decreases. With increasing magnetization difference of magnon crystals, the effect of nonlinear convergence is more pronounced. Conclusion. The identified features extend the capabilities of sandwich structures based on magnon crystals for frequency selective signal processing by controlling the frequency selectivity, both via static coupling parameters, periodicity and layer magnetisation, and dynamically via the input signal power.

About the authors

Nikita Dmitrievich Lobanov

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Oleg Valerevich Matveev

Saratov State University

ORCID iD: 0000-0003-2320-907X
SPIN-code: 7077-7440
Scopus Author ID: 56662865500
ResearcherId: AAH-7508-2019
ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Maria Aleksandrovna Morozova

Saratov State University

ORCID iD: 0000-0003-4442-2443
SPIN-code: 3380-2790
Scopus Author ID: 35105603000
ResearcherId: AAB-5116-2022
ul. Astrakhanskaya, 83, Saratov, 410012, Russia

References

  1. Никитов С. А., Сафин А. Р., Калябин Д. В., Садовников А. В., Бегинин Е. Н., Логунов М. В., Морозова М. А., Одинцов С. А., Осокин С. А., Шараевская А.Ю., Шараевский Ю. П., Кирилюк А. И. Диэлектрическая магноника – от гигагерцев к терагерцам // УФН. 2020. Т. 190, № 10. С. 1009–1040. doi: 10.3367/UFNr.2019.07.038609.
  2. Barman A., Gubbiotti G., Ladak S., Adeyeye A. O., Krawczyk M., Grafe J., Adelmann C., Cotofana S., Naeemi A., Vasyuchka V. I., Hillebrands B., Nikitov S. A., Yu H., Grundler D., Sadovnikov A. V., Grachev A. A., Sheshukova S. E., Duquesne J.-Y., Marangolo M., Csaba G., Porod W., Demidov V. E., Urazhdin S., Demokritov S. O., Albisetti E., Petti D., Bertacco R., Schultheiss H., Kruglyak V. V., Poimanov V. D., Sahoo S., Sinha J., Yang H., Munzenberg M., Moriyama T., Mizukami S., Landeros P., Gallardo R. A., Carlotti G., Kim J.-V., Stamps R. L., Camley R. E., Rana B., Otani Y., Yu W., Yu T., Bauer G. E. W., Back C., Uhrig G. S., Dobrovolskiy O. V., Budinska B., Qin H., van Dijken S., Chumak A. V., Khitun A., Nikonov D. E., Young I. A., Zingsem B. W., Winklhofer M. The 2021 magnonics roadmap // Journal of Physics: Condensed Matter. 2021. Vol. 33, no. 41. P. 413001. doi: 10.1088/1361-648X/abec1a.
  3. Barman A., Sinha J. Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures. Cham: Springer, 2018. 156 p. doi: 10.1007/978-3-319-66296-1.
  4. Krawczyk M., Grundler D. Review and prospects of magnonic crystals and devices with reprogrammable band structure // Journal of Physics: Condensed Matter. 2014. Vol. 26, no. 12. P. 123202. doi: 10.1088/0953-8984/26/12/123202.
  5. Chumak A. V., Serga A. A., Hillebrands B. Magnonic crystals for data processing // Journal of Physics D: Applied Physics. 2017. Vol. 50, no. 24. P. 244001. doi: 10.1088/1361-6463/aa6a65.
  6. Brillouin L. Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. 2d edition. Dover Publications, 1953. 255 p.
  7. Wigen P. E. Nonlinear Phenomena and Chaos in Magnetic Materials. Singapore: World Scientific, 1994. 260 p. doi: 10.1142/1686.
  8. Львов В. С. Нелинейные спиновые волны. М.: Наука, 1987. 272 с.
  9. Лукомский В. П. Нелинейные магнитостатические волны в ферромагнитных пластинах // Укр. физ. журн. 1978. Т. 23, № 1. С. 134.
  10. Wang Q., Kewenig M., Schneider M., Verba R., Kohl F., Heinz B., Geilen M., Mohseni M., Lagel B., Ciubotaru F., Adelmann C., Dubs C., Cotofana S. D., Dobrovolskiy O. V., Bracher T., Pirro P., Chumak A. V. A magnonic directional coupler for integrated magnonic half-adders // Nature Electronics. 2020. Vol. 3, no. 12. P. 765–774. doi: 10.1038/s41928-020-00485-6.
  11. Morozova M. A., Matveev O. V., Romanenko D. V., Trukhanov A. V., Mednikov A. M., Sharaevskii Y. P., Nikitov S. A. Nonlinear spin wave switches in layered structure based on magnonic crystals // Journal of Magnetism and Magnetic Materials. 2020. Vol. 508. P. 166836. doi: 10.1016/j.jmmm. 2020.166836.
  12. Ustinov A. B., Drozdovskii A. V., Kalinikos B. A. Multifunctional nonlinear magnonic devices for microwave signal processing // Applied Physics Letters. 2010. Vol. 96, no. 14. P. 142513. doi: 10.1063/1.3386540.
  13. Castera J. P., Hartemann P. Adjustable magnetostatic surface-wave multistrip directional coupler // Electronics Letters. 1980. Vol. 16, no. 5. P. 195–196. doi: 10.1049/el:19800140.
  14. Wang Q., Pirro P., Verba R., Slavin A., Hillebrands B., Chumak A. V. Reconfigurable nanoscale spin-wave directional coupler // Science Advances. 2018. Vol. 4, no. 1. P. e1701517. DOI: 10.1126/ sciadv.1701517.
  15. Vogt K., Fradin F. Y., Pearson J. E., Sebastian T., Bader S. D., Hillebrands B., Hoffmann A., Schultheiss H. Realization of a spin-wave multiplexer // Nature Communications. 2014. Vol. 5, no. 1. P. 3727. doi: 10.1038/ncomms4727.
  16. Klingler S., Pirro P., Bracher T., Leven B., Hillebrands B., Chumak A. V. Spin-wave logic devices based on isotropic forward volume magnetostatic waves // Applied Physics Letters. 2015. Vol. 106, no. 21. P. 212406. doi: 10.1063/1.4921850.
  17. Sasaki H., Mikoshiba N. Directional coupling of magnetostatic surface waves in a layered structure of YIG films // Journal of Applied Physics. 1981. Vol. 52, no. 5. P. 3546–3552. doi: 10.1063/1.329134.
  18. An K., Bhat V. S., Mruczkiewicz M., Dubs C., Grundler D. Optimization of spin-wave propagation with enhanced group velocities by exchange-coupled ferrimagnet-ferromagnet bilayers // Physical Review Applied. 2019. Vol. 11, no. 3. P. 034065. doi: 10.1103/PhysRevApplied.11.034065.
  19. Morozova M. A., Romanenko D. V., Matveev O. V., Grishin S. V., Sharaevskii Y. P., Nikitov S. A. Suppression of periodic spatial power transfer in a layered structure based on ferromagnetic films // Journal of Magnetism and Magnetic Materials. 2018. Vol. 466. P. 119–124. doi: 10.1016/j.jmmm. 2018.06.077.
  20. Morozova M. A., Sharaevskaya A. Y., Sadovnikov A. V., Grishin S. V., Romanenko D. V., Beginin E. N., Sharaevskii Y. P., Nikitov S. A. Band gap formation and control in coupled periodic ferromagnetic structures // Journal of Applied Physics. 2016. Vol. 120, no. 22. P. 223901. doi: 10.1063/1.4971410.
  21. Morozova M. A., Grishin S. V., Sadovnikov A. V., Romanenko D. V., Sharaevskii Y. P., Nikitov S. A. Tunable bandgaps in layered structure magnonic crystal–ferroelectric // IEEE Transactions on Magnetics. 2015. Vol. 51, no. 11. P. 2802504. doi: 10.1109/TMAG.2015.2446763.
  22. Морозова М. А., Лобанов Н. Д., Матвеев О. В., Никитов С. А. Механизм формирования запрещенных зон спиновых волн в связанных магнонных кристаллах // Письма в ЖЭТФ. 2022. Т. 115, № 12. С. 793–800. doi: 10.31857/S1234567822120072.
  23. Louisell W. H. Coupled Mode and Parametric Electronics. New York: Wiley, 1960. 268 p.
  24. Вашковский А. В., Стальмахов В. С., Шараевский Ю. П. Магнитостатические волны в электронике сверхвысоких частот. Саратов: Издательство Саратовского университета, 1993. 312 с.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies