Propagation of spin waves in a lattice of laterally and vertically coupled YIG microwaveguides by changing the magnetization angle in linear and nonlinear modes

Cover Page

Cite item

Full Text

Abstract

Purpose. Investigation of the joint manifestation of the effects of anisotropic signal propagation, coupling, and nonlinear power dependence of the medium parameters in a lattice of laterally and vertically coupled spin-wave (SW) microwaveguides. Consideration of the case of the influence of the rotation of the magnetization angle and the change of the lateral gap between microwaveguides located on the same substrate on the transverse profile of the spin-wave beam and the spatial localization of the SW amplitude. Methods. The method of micromagnetic modeling based on the numerical solution of the Landau–Lifshitz–Hilbert equation shows the possibility of controlling the direction of propagation of SW in an ensemble of laterally and vertically coupled iron yttrium garnet (YIG) microwaveguides by changing the magnetization angle. By the method of numerical integration of the system of coupled discrete nonlinear Schrodinger equations, the possibility of changing the transverse profile of the spin-wave beam by changing the level of the initial signal amplitude is shown. Results. The spatial distributions of the components of the dynamic magnetization of the SW excited in two microwaveguides located on the same substrate obtained in micromagnetic simulations indicate a change in the character of localization of the SW power in the output sections of the microwaveguides. At variation of the lattice magnetization angle, a shift of the threshold power value is observed, at which a characteristic curbing of the transverse width of the spin-wave beam in the nonlinear mode appears. Conclusion. When excitation of surface magnetostatic SW in a lattice of laterally and vertically coupled microwaveguides, a transformation of the transverse profile of the wave is observed at a deviation of the magnetization angle of the structure by 15º , which is manifested in the change of the SW length and its localization in each of the microwaveguides. The combined effects of dipole coupling, gyrotropy, and nonlinearity of the medium make it possible to control the value of the threshold power of the SW, at which the mode of diffractionless propagation of the spin-wave beam is realized in a single layer of the structure.

About the authors

A. B. Khutieva

Saratov State University

ORCID iD: 0000-0003-4234-420X
SPIN-code: 5141-6049
Scopus Author ID: 57224630138
ResearcherId: AAD-1620-2022
ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Andrey Andreevich Grachev

Saratov State University

Scopus Author ID: 57192877842
ResearcherId: T-5733-2017
ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Evgeny N. Beginin

Saratov State University

ORCID iD: 0000-0001-7138-8282
Scopus Author ID: 24722705200
ResearcherId: D-5766-2013
ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Aleksandr Vladimirovich Sadovnikov

Saratov State University

ORCID iD: 0000-0002-8847-2621
Scopus Author ID: 36683238600
ResearcherId: F-6183-2012
ul. Astrakhanskaya, 83, Saratov, 410012, Russia

References

  1. Chumak A. V., Kabos P., Wu M., Abert C., Adelmann C., Adeyeye A. O., Akerman J., Aliev F. G., Anane A., Awad A., Back C. H., Barman A., Bauer G. E. W., Becherer M., Beginin E. N., Bittencourt V. A. S. V., Blanter Y. M., Bortolotti P., Boventer I., Bozhko D. A., Bunyaev S. A., Carmiggelt J. J., Cheenikundil R. R., Ciubotaru F., Cotofana S., Csaba G., Dobrovolskiy O. V., Dubs C., Elyasi M., Fripp K. G., Fulara H., Golovchanskiy I. A., Gonzalez-Ballestero C., Graczyk P., Grundler D., Gruszecki P., Gubbiotti G., Guslienko K., Haldar A., Hamdioui S., Hertel R., Hillebrands B., Hioki T., Houshang A., Hu C.-M., Huebl H., Huth M., Iacocca E., Jungfleisch M. B., Kakazei G. N., Khitun A., Khymyn R., Kikkawa T., Klaui M., Klein O., K ¨ los J. W., Knauer S., Koraltan S., Kostylev M., Krawczyk M., Krivorotov I. N., Kruglyak V. V., Lachance Quirion D., Ladak S., Lebrun R., Li Y., Lindner M., Macedo R., Mayr S., Melkov G. A., Mieszczak S., ˆ Nakamura Y., Nembach H. T., Nikitin A. A., Nikitov S. A., Novosad V., Otalora J. A., Otani Y., ´ Papp A., Pigeau B., Pirro P., Porod W., Porrati F., Qin H., Rana B., Reimann T., Riente F., Romero-Isart O., Ross A., Sadovnikov A. V., Safin A. R., Saitoh E., Schmidt G., Schultheiss H., Schultheiss K., Serga A. A., Sharma S., Shaw J. M., Suess D., Surzhenko O., Szulc K., Taniguchi T., Urbanek M., Usami K., Ustinov A. B., van der Sar T., van Dijken S., Vasyuchka V. I., Verba R., Viola Kusminskiy S., Wang Q., Weides M., Weiler M., Wintz S., Wolski S. P., Zhang X. Advances in magnetics roadmap on spin-wave computing // IEEE Transactions on Magnetics. 2022. Vol. 58, no. 6. P. 0800172. doi: 10.1109/TMAG.2022.3149664.
  2. Prabhakar A., Stancil D. D. Spin Waves: Theory and Applications. New York: Springer, 2009. 348 p. doi: 10.1007/978-0-387-77865-5.
  3. Wang Q., Kewenig M., Schneider M., Verba R., Kohl F., Heinz B., Geilen M., Mohseni M., Lagel B., Ciubotaru F., Adelmann C., Dubs C., Cotofana S. D., Dobrovolskiy O. V., Bracher T., Pirro P., Chumak A. V. A magnonic directional coupler for integrated magnonic half-adders // Nature Electronics. 2020. Vol. 3, no. 12. P. 765–774. doi: 10.1038/s41928-020-00485-6.
  4. Vogt K., Schultheiss H., Jain S., Pearson J. E., Hoffmann A., Bader S. D., Hillebrands B. Spin waves turning a corner // Appl. Phys. Lett. 2012. Vol. 101, no. 4. P. 042410. doi: 10.1063/1.4738887.
  5. Balynsky M., Gutierrez D., Chiang H., Kozhevnikov A., Dudko G., Filimonov Y., Balandin A. A., Khitun A. A magnetometer based on a spin wave interferometer // Scientific Reports. 2017. Vol. 7, no. 1. P. 11539. doi: 10.1038/s41598-017-11881-y.
  6. Raskhodchikov D., Bensmann J., Nikolaev K. O., Lomonte E., Jin L., Steeger P., Preuß J. A., Schmidt R., Schneider R., Kern J., de Vasconcellos S. M., Bratschitsch R., Demokritov S. O., Pernice W. H. P., Demidov V. E. Propagation of spin waves in intersecting yttrium iron garnet nanowaveguides // Phys. Rev. Applied. 2022. Vol. 18, no. 5. P. 054081. DOI: 10.1103/ PhysRevApplied.18.054081.
  7. Sadovnikov A. V., Beginin E. N., Sheshukova S. E., Sharaevskii Y. P., Stognij A. I., Novitski N. N., Sakharov V. K., Khivintsev Y. V., Nikitov S. A. Route toward semiconductor magnonics: Lightinduced spin-wave nonreciprocity in a YIG/GaAs structure // Phys. Rev. B. 2019. Vol. 99, no. 5. P. 054424. doi: 10.1103/PhysRevB.99.054424.
  8. Martyshkin A. A., Davies C. S., Sadovnikov A. V. Magnonic interconnections: Spin-wave propagation across two-dimensional and three-dimensional junctions between yttrium iron garnet magnonic stripes // Phys. Rev. Applied. 2022. Vol. 18, no. 6. P. 064093. doi: 10.1103/PhysRevApplied. 18.064093.
  9. Sadovnikov A. V., Beginin E. N., Sheshukova S. E., Romanenko D. V., Sharaevskii Y. P., Nikitov S. A. Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes // Appl. Phys. Lett. 2015. Vol. 107, no. 20. P. 202405. doi: 10.1063/1.4936207.
  10. Sasaki H., Mikoshiba N. Directional coupling of magnetostatic surface waves in a layered structure of YIG films // J. Appl. Phys. 1981. Vol. 52, no. 5. P. 3546–3552. doi: 10.1063/1.329134.
  11. Morozova M. A., Sharaevskaya A. Y., Sadovnikov A. V., Grishin S. V., Romanenko D. V., Beginin E. N., Sharaevskii Y. P., Nikitov S. A. Band gap formation and control in coupled periodic ferromagnetic structures // J. Appl. Phys. 2016. Vol. 120, no. 22. P. 223901. doi: 10.1063/1.4971410.
  12. Дудко Г. М., Филимонов Ю. А. Самофокусировка ограниченных пучков обратных объемных магнитостатических волн в ферромагнитных плёнках: численный эксперимент // Известия вузов. ПНД. 1997. Т. 5, № 6. С. 29–40.
  13. Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F., Van Waeyenberge B. The design and verification of MuMax3 // AIP Advances. 2014. Vol. 4, no. 10. P. 107133. doi: 10.1063/1.4899186.
  14. Ustinov A. B., Drozdovskii A. V., Kalinikos B. A. Multifunctional nonlinear magnonic devices for microwave signal processing // Appl. Phys. Lett. 2010. Vol. 96, no. 14. P. 142513. DOI: 10.1063/ 1.3386540.
  15. Ganguly A. K., Vittoria C. Magnetostatic wave propagation in double layers of magnetically anisotropic slabs // J. Appl. Phys. 1974. Vol. 45, no. 10. P. 4665–4667. doi: 10.1063/1.1663113.
  16. Puszkarski H. Theory of interface magnons in magnetic multilayer films // Surface Science Reports. 1994. Vol. 20, no. 2. P. 45–110. doi: 10.1016/0167-5729(94)90011-6.
  17. Gubbiotti G., Sadovnikov A., Beginin E., Nikitov S., Wan D., Gupta A., Kundu S., Talmelli G., Carpenter R., Asselberghs I., Radu I. P., Adelmann C., Ciubotaru F. Magnonic band structure in vertical meander-shaped Co40Fe40B20 thin films // Phys. Rev. Applied. 2021. Vol. 15, no. 1. P. 014061. doi: 10.1103/PhysRevApplied.15.014061.
  18. Sadovnikov A. V., Odintsov S. A., Beginin E. N., Sheshukova S. E., Sharaevskii Y. P., Nikitov S. A. Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes // Phys. Rev. B. 2017. Vol. 96, no. 14. P. 144428. doi: 10.1103/PhysRevB.96. 144428.
  19. Sadovnikov A. V., Odintsov S. A., Sheshukova S. E., Sharaevskii Y. P., Nikitov S. A. Nonlinear lateral spin-wave transport in planar magnonic networks // IEEE Magnetics Letters. 2018. Vol. 9. P. 3707105. doi: 10.1109/LMAG.2018.2874349.
  20. Вашковский А. В., Стальмахов А. В. Дисперсия магнитостатических волн в двухслойных структурах феррит–феррит // Радиотехника и электроника. 1984. Т. 29, № 5. С. 901–907.
  21. Grachev A. A., Sheshukova S. E., Kostylev M. P., Nikitov S. A., Sadovnikov A. V. Reconfigurable dipolar spin-wave coupling in a bilateral yttrium iron garnet structure // Phys. Rev. Applied. 2023. Vol. 19, no. 5. P. 054089. doi: 10.1103/PhysRevApplied.19.054089.
  22. Odincov S. A., Grachev A. A., Nikitov S. A., Sadovnikov A. V. Intensity and magnetization angle reconfigurable lateral spin-wave coupling and transport // Journal of Magnetism and Magnetic Materials. 2020. Vol. 500. P. 166344. doi: 10.1016/j.jmmm.2019.166344.
  23. Gurevich A. G., Melkov G. A. Magnetization Oscillations and Waves. London: CRC Press, 1996. 456 p.
  24. Lederer F., Stegeman G. I., Christodoulides D. N., Assanto G., Segev M., Silberberg Y. Discrete solitons in optics // Phys. Rep. 2008. Vol. 463, no. 1–3. P. 1–126. doi: 10.1016/j.physrep.2008. 04.004.
  25. Кившарь Ю. С., Агравал Г. П. Оптические солитоны. От волоконных световодов до фотонных кристаллов. М.: ФИЗМАТЛИТ, 2005. 648 с.
  26. Садовников А. В., Грачев А. А., Бегинин Е. Н., Одинцов С. А., Шешукова С. Е., Шараевский Ю. П., Сердобинцев А. А., Митин Д. М., Никитов С. А. Связанные спиновые волны в индуцированных упругими деформациями магнитных волноводах в структуре ЖИГ-пьезоэлектрик // Письма в Журнал экспериментальной и теоретической физики. 2017. Т. 106, № 7. С. 445–450. doi: 10.7868/S0370274X17190092.
  27. Sasaki H., Mikoshiba N. Directional coupling of magnetostatic surface waves in layered magnetic thin films // Electronics Letters. 1979. Vol. 15, no. 6. P. 172–174. doi: 10.1049/el:19790121.
  28. Зависляк И. В., Тычинский А. В. Физические основы функциональной микроэлектроники. Киев: УМК ВО, 1989. 105 с.
  29. Damon R. W., Eshbach J. R. Magnetostatic modes of a ferromagnet slab // Journal of Physics and Chemistry of Solids. 1961. Vol. 19, no. 3–4. P. 308–320. doi: 10.1016/0022-3697(61)90041-5.
  30. Gubbiotti G. Three-Dimensional Magnonics: Layered, Micro- and Nanostructures. New York: Jenny Stanford Publishing, 2019. 416 p. doi: 10.1201/9780429299155.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies