Fenner trend and the role of fractional crystallisation and ferrobasaltic magma immiscibility in granophyre petrogenesis: the case of the mesoproterozoic Valaam sill in the Ladoga graben, Karelia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Petrographic, mineralogical, geochemical, isotope-geochemical studies of granophyres and host ferrogabbro, quartz ferromontsogabbro, quartz montsodiorites, and quartz monzonites in the Mesoproterozoic Valaam sill in the Ladoga Graben on the Karelian craton have been carried out. The sill is poorly layered: ferrogabbros are common in the lower part of the sill, the middle part consists of quartz gabbro-monzonites and quartz monzonites, granophyres form a network of veins mainly in the upper part of the sill. Geochemical features of ferrogabbro, iron-rich composition of olivine and pyroxene, low Ca composition of plagioclase indicate evolution along the Fenner trend. Granophyres have petro- and geochemical characteristics of anorogenic alkaline granites, are characterised by negative Eu/Eu* = = 0.15–0.49 and REE distribution similar to those of granophyres of layered intrusives. All rocks of the sill are characterised by a similar isotopic composition of Sr (87Sr/86Sr)T = 0.7043–0.7066, and εNd values ranging from –9.6 to –11.2. Model calculations show that fractional crystallisation can lead the initial ferrogabbro melt into immiscibility. Ilmenite-magnetite-silicate microstructures have been identified in ferrogabbro and ferromontzogabbro from the sill; similar microstructures in layered intrusives are considered evidence for immiscibility of Fe-enriched and Si-enriched liquids (Holness et al., 2011; Dong et al., 2013). The segregation of the high-silica melt may have occurred in a crustal chamber at around 350 MPa and 960oC; the sill formation at around 70 MPa injected magma in the form of a crystalline mush through which acidic melt migrated. This melt underwent fractional crystallisation and reacted with host minerals. At the level of sill formation, it crystallised under supercooling into granophyre aggregates. The example of the Valaam sill shows that after fractionation according to the classical Fenner trend reaches the final composition – ferrogabbro, its continuation with a conjugate decrease in SiO2 and Fe contents can be associated with incomplete separation and mixing of iron-rich melts and separated acidic melt. Such a mechanism can be realised during the formation of the mafic part of AMCG-type massifs.

Full Text

Restricted Access

About the authors

А. А. Nosova

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Author for correspondence.
Email: nosova@igem.ru
Russian Federation, Moscow

N. М. Lebedeva

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: nosova@igem.ru
Russian Federation, Moscow

A. A. Vozniak

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: nosova@igem.ru
Russian Federation, Moscow

L. V. Sazonova

Lomonosov Moscow State University

Email: nosova@igem.ru

Geological Department

Russian Federation, Moscow

I. A. Kondrashov

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: nosova@igem.ru
Russian Federation, Moscow

Y. O. Larionova

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: nosova@igem.ru
Russian Federation, Moscow

Е. V. Коvalchuk

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: nosova@igem.ru
Russian Federation, Moscow

References

  1. Котельникова З.А., Котельников А.Р. Фазовое состояние NaF-содержащего флюида при 700 С и Р = 1, 2 и 3 кбар по данным изучения синтетических флюидных включений в кварце // Геология и геофизика. 2011. Т. 52. № 11. С. 1665–1676.
  2. Купцова А.В., Худолей А.К., Дэвиc В.И. др. Возраст и источники сноса песчаников приозерской и салминской свит рифея в восточном борту Пашско-Ладожского бассейна (южная окраина Балтийского щита) // Стратиграфия. Геол. корреляция. 2011. T. 19. № 2. C. 3–19.
  3. Ларин А.М. Граниты рапакиви и ассоциирующие породы. СПб.: Наука, 2011. 402 с.
  4. Ларионова Ю.О., Самсонов А.В., Шатагин К.Н. Источники архейских санукитоидов (высоко-Mg субщелочных гранитоидов) Карельского кратона: Sm-Nd и Rb-Sr изотопно-геохимические данные // Петрология. 2007. Т. 15. № 6. С. 571–593.
  5. Максимов А.В., Богданов Ю.Б., Воинова О.А. и др. Государственная геологическая карта Российской Федерации. Масштаб 1:1000 000 (третье поколение). Серия Балтийская. Лист P-(35),36. Петрозаводск. Объяснительная записка. СПб.: Картографическая фабрика ВСЕГЕИ, 2015. 400 с. + 3 вкл.
  6. Савельева В.Б., Базарова Е.П., Шарыгин В.В., Карманов Н.С. Циркон-кварц-кальцитовые обособления в карбонатно-щелочных метасоматитах западного прибайкалья и их петрогенетическое значение // Зап. РМО. 2014. Т. 143. № 5. С. 1–16.
  7. Свириденко Л.П. К проблеме генезиса рапакиви и других калиевых гранитов. Петрология и структурный анализ кристаллических образований. Л.: Наука, 1970. С. 152–156.
  8. Свириденко Л.П., Светов А.П. Валаамский силл габбро-долеритов и геодинамика котловины Ладожского озера. Петрозаводск: Карел. НЦ РАН, 2008. 123 с.
  9. Смирнов С.З. Флюидный режим кристаллизации водонасыщенных гранитных и пегматитовых магм: физико-химический анализ // Геология и геофизика. 2015. Т. 56. № 9. С. 1643–1663.
  10. Степанов К.И., Житникова И.А., Михайлова Д.В. и др. Государственная геологическая карта СССР масштаба 1 : 200000. Серия Карельская. Листы Р-35-XXIV, P-36-XIX (Сортавала). Объяснительная записка. СПб., 2004. 220 с.
  11. Франк-Каменецкий Д.А. Петрология рифейских базитов Приладожья: Дисс. … докт. геол.-мин. наук. СПб.: СПБГУ. 1998. 150 с.
  12. Acosta M.D., Watkins J.M., Reed M.H. et al. Ti-in-quartz: Evaluating the role of kinetics in high temperature crystal growth experiments // Geochim. Cosmochim. Acta. 2020. Т. 281. С. 149–167.
  13. Amantov A., Laitakari I., Poroshin Ye. Jotnian and Postjotnian sandstones and diabases in the surroundings of the Gulf of Finland // Explanation to the Map of Precambrian basement of Gulf of Finland and surrounding area 1:1 mill, Geol. Sur. Finland. Spec. Paper 21. 1996. P. 99–113.
  14. Amelin Y.V., Larin A.M., Tucker R.D. Chronology of multiphase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: implications for magmatic evolution // Contrib. Mineral. Petrol. 1997. V. 127. P. 353–368.
  15. Artemieva I.M., Shulgin A. Is the proterozoic ladoga rift (SE Baltic Shield) a rift? // Precambr. Res. 2015. Т. 259. С. 34–42.
  16. Barnes S.J., Mungall J.E., Le Vaillant M. et al. Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: Disseminated and net-textured ores // Amer. Mineral. 2017. V. 102. № 3. P. 473–506. doi: 10.2138/am-2017–5754
  17. Barnes S.J., Yudovskaya M.A., Iacono-Marziano G. et al. Role of volatiles in intrusion emplacement and sulfide deposition in the supergiant Norilsk-Talnakh Ni-Cu-PGE ore deposits // Geology. 2023.
  18. https://doi.org/10.1130/G51359.1
  19. Bindeman I.N., Brooks C.K., McBirney A.R. et al. The low-δ18O late-stage ferrodiorite magmas in the skaergaard intrusion: result of liquid immiscibility, thermal metamorphism, or meteoric water incorporation into magma? // J. Geol. 2008. Т. 116. № 6. С. 571–586.
  20. Boehnke P., Watson E.B., Trail D. et al. Zircon saturation re-revisited // Chem. Geol. 2013. Т. 351. С. 324–334.
  21. Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects // Lithos. 2007. V. 97. № 1–2. P. 1–29.
  22. Brander L., Söderlund U. Mesoproterozoic (1.47–1.44 Ga) orogenic magmatism in Fennoscandia; Baddeleyite U-Pb dating of a suite of massif-type anorthosite in S. Sweden // Int. J. Earth Sci. 2009. V. 98. № 3. P. 499–516.
  23. Borisov A., Aranovich L. Zircon solubility in silicate melts: New experiments and probability of zircon crystallization in deeply evolved basic melts // Chem. Geol. 2019. V. 510. P. 103–112.
  24. Botcharnikov R.E., Almeev R.R., Koepke J. et al. Phase relations and liquid lines of descent in hydrous ferrobasalt – Implications for the skaergaard intrusion and Columbia river flood basalts // J. Petrol. 2008. V. 49. № 9. P. 1687–1727.
  25. Campe C.E. Ghost granophyre: A new texture with implications for plagiogranite differentiation and Ti-in-quartz thermometry. Master of Science in Geology in the Graduate College of the University of Illinois Urbana-Champaign. 2021.
  26. Charlier B., Grove T.L. Experiments on liquid immiscibility along tholeiitic liquid lines of descent // Contrib. Mineral. Petrol. 2012. V. 164. № 1. P. 27–44.
  27. Charlier B., Namur O., Grove T.L. Compositional and kinetic controls on liquid immiscibility in ferrobasalt-rhyolite volcanic and plutonic series // Geochim. Cosmochim. Acta. 2013. V. 113. P. 79–93.
  28. Coint N., Keiding J.K., Ihlen P.M. Evidence for silicate–liquid immiscibility in monzonites and petrogenesis of associated Fe–Ti–P-rich rocks: Example from the Raftsund Intrusion, Lofoten, Northern Norway // J. Petrol. 2020. V. 61. № 4. egaa045.
  29. DePaolo D.J. Neodymium isotopes in the Colorado Front Range and implications for crust formation and mantle evolution in the Proterozoic // Nature. 1981. V. 291. P. 193–197.
  30. Dong H., Xing C., Wang C.Y., Textures and mineral compositions of the Xinjie layered intrusion, SW China: Implications for the origin of magnetite and fractionation process of Fe-Ti-rich basaltic magmas // Geosci. Frontiers. 2013. V. 4. I. 5. P. 503–515. https://doi.org/10.1016/j.gsf.2013.01.011
  31. Dyck B., Holness M. Microstructural evidence for convection in high-silica granite // Geology. 2022. V. 50. № 3. P. 295–299.
  32. Fenner C.N. The crystallization of basalts // Amer. J. Sci. 1929. Ser. 5. V. 18. P. 225–253.
  33. Fischer L.A., Wang M., Charlier B. et al. Immiscible iron- and silica-rich liquids in the Upper Zone of the Bushveld Complex // Earth Planet. Sci. Lett. 2016. V. 443. P. 108–117.
  34. Foden J., Sossi P.A., Wawryk C.M. Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite // Lithos. 2015. V. 212–215. P. 32–44.
  35. Fred R., Heinonen A., Heinonen J.S. Equilibrium crystallization of massif-type anorthosite residual melts: a case study from the 1.64 Ga Ahvenisto complex, Southeastern Finland // Contrib. Mineral. Petrol. 2020. V. 175. № 9. P. 1–23.
  36. Frost B.R., Arculus R.J., Barnes C.G. et al. A geochemical classification of granitic rocks // J. Petrol. 2001. V. 42. P. 2033–2048.
  37. Frost C.D., Frost B.R. Reduced rapakivi-type granites: the tholeiite connection // Geology. 1997. V. 25. № 7. P. 647–650.
  38. Frost C.D., Frost B.R. On ferroan (A-type) granitoids: their compositional variability and modes of origin // J. Petrol. 2011. V. 52. № 1. P. 39–53.
  39. Gelman S.E., Deering C.D., Bachmann O. et al. Identifying the crystal graveyards remaining after large silicic eruptions // Earth Planet. Sci. Lett. 2014. V. 403. P. 299–306.
  40. Gervasoni F., Klemme S., Rocha-Júnior E.R.V. et al. Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts // Contrib. Mineral. Petrol. 2016. V. 171. № 3. P. 1–12.
  41. Grabarczyk A., Wiszniewska J., Krzemińska E. et al. A new A-type granitoid occurrence in southernmost Fennoscandia: geochemistry, age and origin of rapakivi-type quartz monzonite from the Pietkowo IG1 borehole, NE Poland // Mineral. Petrol. 2023. V. 117. № 1. P. 1–25.
  42. Hirschmann M. Origin of the Transgressive granophyres from the Layered Series of the Skaergaard intrusion, East Greenland // J. Volcanol. Geotherm. Res.1992. V. 52. № 1–3. P. 185–207.
  43. Holness M.B., Stripp G., Humphreys M.C.S. et al. Silicate liquid immiscibility within the crystal mush: late-stage magmatic microstructures in the skaergaard intrusion, east greenland // J. Petrol. 2011. V. 52. № 1. P. 175–222.
  44. Honour V.C., Holness M.B., Partridge J.L. et al. Microstructural evolution of silicate immiscible liquids in ferrobasalts // Contrib. Mineral. Petrol. 2019. V. 174. № 9. P. 1–24.
  45. Huang R., Audétat A. The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration // Geochim. Cosmochim. Acta. 2012. V. 84. P. 75–89.
  46. Jahns R.H., Burnham C.W. Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites // Econom. Geol. 1969. V. 64. № 8. P. 843–864.
  47. Jakobsen J.K., Veksler I.V., Tegner C. et al. Immiscible iron- and silica-rich melts in basalts petrogenesis documented in the Skaergaard intrusion // Geology. 2005. V. 33. № 11. P. 885–888.
  48. Johansson Å., Bingen B., Huhma H. et al. A geochronological review of magmatism along the external margin of Columbia and in the Grenville-age orogens forming the core of Rodinia // Precambr. Res. 2022. V. 371. P. 106463. https://doi.org/10.1016/j.precamres.2021.106463
  49. Karandashev V.K., Khvostikov V.A., Nosenko S.V., Burmii Z.P. Stable highly enriched isotopes in routine analysis of rocks, soils, grounds, and sediments by ICP-MS // Inorganic Materials. 2017. V. 53. P. 1432–1441.
  50. Konopelko D., Savatenkov V., Glebovitsky V. et al. Nd isotope variation across the archaean-proterozoic boundary in the North Ladoga Area, Russian Karelia // GFF. 2005. V. 127. № 2. P. 115–122.
  51. Latypov R., Chistyakova S., Costin G. et al. Monomineralic anorthosites in layered intrusions are indicators of the magma chamber replenishment by plagioclase-only-saturated melts // Sci. Rep. 2020. V. 10. № 1. P. 1–14.
  52. Larsen B.R. Syn-magmatic granophyric-rich pipes in the Skaergaard Intrusion, East Greenland: Implications for cross-cumulus melt transfer during layered gabbro formation // International Geological Congress. Oslo. 2008.
  53. https://gsi.ir/en/articles/9172/
  54. Lesher C.E, Brown E.L., Barfod G.H. et al. Iron isotope systematics of the skaergaard intrusion and implications for its liquid line of descent // J. Petrol. 2023. V. 64. Iss. 8. https://doi.org/10.1093/petrology/egad053
  55. Lino L.M., Carvalho P.R., Vlach S.R.F. et al. Evidence for silicate liquid immiscibility in recharging, alkali-rich tholeiitic systems: the role of unmixing in the petrogenesis of intermediate, layered plutonic bodies and bimodal volcanic suites // Lithos. 2023. V. 450–451. P. 107–193. https://doi.org/10.1016/j.lithos.2023.107193
  56. Lowenstern J.B. Carbon dioxide in magmas and implications for hydrothermal systems // Mineral. Depos. 2001. V. 36. № 6. P. 490–502
  57. Lubnina N.V., Mertanen S., Söderlund U. et al. A new key pole for the East European Craton at 1452Ma: Palaeomagnetic and geochronological constraints from mafic rocks in the Lake Ladoga region (Russian Karelia) // Precambr. Res. 2010. V. 183. № 3. P. 442–462.
  58. Maneta V., Anderson A.J. Monitoring the crystallization of water-saturated granitic melts in real time using the hydrothermal diamond anvil cell // Contrib. Mineral. Petrol. 2018. V. 173. № 10. С. 0.
  59. McBirney A.R. The Skaergaard Intrusion // Dev. Petrol. 1996. V. 15. № C. P. 147–180.
  60. McLelland J.M., Selleck B.W., Hamilton M.A. et al. Late- to post-tectonic setting of some major proterozoic anorthosite-mangerite-charnockite-granite (AMCG) suites // Can. Mineral. 2010. V. 48. № 4. P. 729–750.
  61. Morgan G.B., London D. Process of granophyre crystallization in the long mountain granite, Southern Oklahoma // Bull. Geol. Soc. Amer. 2012. V. 124. № 7–8. P. 1251–1261.
  62. Namur O., Charlier B., Toplis M.J. et al. Crystallization sequence and magma chamber processes in the ferrobasaltic Sept Iles layered intrusion, Canada // J. Petrol. 2010. V. 51. № 6. P. 1203–1236.
  63. Neymark L.A., Yu. Amelin V., Larin A.M. Pb-Nd-Sr isotopic and geochemical constraints on the origin of the 1.54–1.56 Ga Salmi rapakivi granite-anorthosite batholith (Karelia, Russia) // Mineral. Petrol. 1994. V. 50. № 1–3. P. 173–193.
  64. Nosova A.A., Sazonova L.V., Kargin A.V. et al. Mineralogy and geochemistry of ocelli in the damtjernite dykes and sills, chadobets uplift, siberian craton: Evidence of the fluid–lamprophyric magma interaction // Minerals. 2021. V. 11. № 7. P. 1–24. https://doi.org/10.3390/min11070724
  65. Nosova A.A., Lebedeva N.M., Sazonova L.V. et al. Immiscibility between Fe- and Si-rich silicate melts in mesoproterozoic ferrobasalt of the Ladoga Graben, Karelia, Russia // Dokl. Earth Sci. 2022. V. 505. № 2. P. 517–523.
  66. Peng P., Wang X., Lai Y. et al. Large-scale liquid immiscibility and fractional crystallization in the 1780 Ma Taihang dyke swarm: Implications for genesis of the bimodal Xiong’er volcanic province // Lithos. 2015. V. 236. P. 106–122.
  67. Putirka K.D. Thermometera and barometers for volcanic systems // Rev. Mineral. Geochem. 2008. V. 69. P. 61–120. https://doi.org/10.2138/rmg.2008.69.3
  68. Rämö O.T. Petrogenesis of the Proterozoic rapakivi granites and related rocks of southeastern Fennoscandia: Nd and Pb isotopic and general geochemical constraints // Geol. Surv. Finl. 1991. Bull. 335. P. 161.
  69. Rämö O.T., Mänttäri I., Vaasjoki M. et al. Age and significance of Mesoproterozoic CFB magmatism, Lake Ladoga region, NW Russia // Geol. Soc. Amer. Abstract Programs. 2001. V. 33. P. 6.
  70. Rhodes R.C. Bushveld Granophyre in the Stavoren tin district, Transvaal // South African J. Geol. 1975. V. 78. № 1. P. 71–74.
  71. Ridolfi F. Amp-TB2: an updated model for calcic amphibole thermobarometry // Minerals. 2021. V. 11. № 3. P. 324.
  72. Ridolfi F., Renzulli A., Puerini M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes // Contrib. Mineral. Petrol. 2010. V. 160. P. 45–66.
  73. Sauerzapf U., Lattard D., Burchard M., Engelmann R. The titanomagnetite–ilmenite equilibrium: new experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks // J. Petrol. 2008. V. 49. № 6. P. 1161–1185.
  74. Seitz S., Putlitz B., Baumgartner L. et al. A NanoSIMS Investigation on Timescales Recorded in Volcanic Quartz From the Silicic Chon Aike Province (Patagonia) // Front. Earth Sci. 2018. V. 6. P. 1–19.
  75. Shah S.A., Shao Y., Zhang Y. et al. Texture and Trace Element Geochemistry of Quartz: A Review // Minerals. 2022. V. 12. № 8. P. 1–25.
  76. Sharkov E.V. Middle-proterozoic anorthosite-rapakivi granite complexes: An example of within-plate magmatism in abnormally thick crust: Evidence from the East European Craton // Precambrian Res. 2010. V. 183. № 4. P. 689–700.
  77. Shellnutt J.G., Zhou M.F., Zellmer G.F. The role of Fe-Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap: An example from the Permian Baima igneous complex, SW China // Chem. Geol. 2009. V. 259. № 3–4. P. 204–217.
  78. Siégel C., Bryan S.E., Allen C.M. et al. Use and abuse of zircon-based thermometers: A critical review and a recommended approach to identify antecrystic zircons // Earth-Sci. Rev. 2018. V. 176. P. 87–116.
  79. Skursch O., Tegner C., Lesher C.E. et al. Two expressions of the transition from mafic cumulates to granitoids in the Bushveld Complex, South Africa: Examples from the western and eastern limbs // Lithos. 2020. V. 372–373. P. 105671.
  80. Sun S. McDonough W. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geol. Soc. London. Spec. Publ. 1989. V. 42. P. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  81. Thomas R., Davidson P. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state – Consequences for the formation of pegmatites and ore deposits // Ore Geol. Rev. 2016. V. 72. P. 1088–1101.
  82. Thomas R., Davidson P., Schmidt C. Extreme alkali bicarbonate- and carbonaterich fluid inclusions in granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark // Contrib. Mineral. Petrol. 2011. V. 161. P. 315–329.
  83. Thy P., Lesher C.E. Tegner C. The Skaergaard liquid line of descent revisited // Contrib. Mineral. Petrol. 2009. V. 157. P. 735–747. https://doi.org/10.1007/s00410-008-0361-6
  84. Toplis M.J., Carroll M.R. An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems // J. Petrol. 1995. V. 36. № 5. P. 1137–1170.
  85. Toplis M.J., Carroll M.R. Differentiation of ferro-basaltic magmas under conditions open and closed to oxygen: Implications for the skaergaard intrusion and other natural systems // J. Petrol. 1996. V. 37. № 4. P. 837–858.
  86. Troll V.R., Nicoll G.R., Ellam R.M. et al. Petrogenesis of the Loch Bà ring-dyke and Centre 3 granites, Isle of Mull, Scotland // Contrib. Mineral. Petrol. 2021. V. 176. № 2. P. 1–22.
  87. Van Achterbergh E., Ryan C., Jackson S., Griffin W. Data reduction software for LA-ICP-MS. LaserAblation ICP-MS in the Earth Sciences – Principles and applications // Short Courses – Mineral. Ass. Canada. 2001. V. 29. P. 239–224.
  88. VanTongeren J.A., Mathez E.A. Large-scale liquid immiscibility at the top of the Bushveld Complex, South Africa // Geology. 2012. V. 40. № 6. С. 491–494.
  89. Vantongeren J.A., Mathez E.A., Kelemen P.B. A felsic end to Bushveld differentiation // J. Petrol. 2010. V. 51. № 9. P. 1891–1912.
  90. Veksler I.V., Kähn J., Franz G., Dingwell D.B. Interfacial tension between immiscible liquids in the system K2O-FeO-Fe2O3-Al2O3-SiO2 and implications for the kinetics of silicate melt unmixing // Amer. Mineral. 2010. V. 95. P. 1679–1685.
  91. Villa I.M., Bièvre P. De, Holden N.E. et al. IUPAC–IUGS recommendation on the half life of 87Rb // Geochim. Cosmochim. Acta. 2015. V. 164. P. 382–385.
  92. Wager L., Brown G. Layered igneous rocks. Edinburgh and London: Oliver and Boyd, 1968. 588 р.
  93. Wu F.Y., Liu X.C., Ji W.Q. et al. Highly fractionated granites: Recognition and research // Sci. China Earth Sci. 2017. V. 60. № 7. P. 1201–1219.
  94. Zhang C., Li X., Almeev R.R. et al. Ti-in-quartz thermobarometry and TiO2 solubility in rhyolitic melts: new experiments and parametrization // Earth Planet. Sci. Lett. 2020. V. 538. P. 116213.
  95. Zhang Y., Namur O., Charlier B. Experimental study of high-Ti and low-Ti basalts: liquid lines of descent and silicate liquid immiscibility in large igneous provinces // Contrib. Mineral. Petrol. 2023. V. 178. № 1. P. 1–24.
  96. Zhu D., Bao H., Liu Y. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber // Sci. Rep. 2015. V. 5. P. 1–10.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a) Geological position of the Valaam sill in the structures of the northwest of the East European Craton according to (Brander, Söderlund, 2007) and (Grabarczyk et al., 2023), with additions. The rectangle highlights the area shown in (b). (b) Geological scheme of the Northern Ladoga region shows the position of the Valaam sill within the Ladoga graben in the junction area of ​​the Karelian Craton and the Svecofennian orogenic region. 1, 2: volcanic association of the Ladoga graben: 1 – Valaam sill, ferrogabbro, quartz ferromonzogabbro, monzodiorites, quartz monzonites, graphic leucogranites (µМР1v); 2 – ferrobasalts, Salmi Formation (βMP1sl); 3 – siltstones, sandstones, Priozersk and Salmi suites (МР1pr+sl); 4 – Salmi massif of AMCG type (ργМР1). 5–11: Svecofennian orogenic region: 5 – Elisenvaara-Vuoksi monzogabbro-monzonite-syenite-granite complex (µν-γµPR3ev); 6 – diorite-mafic complex (νβPR1); 7 – Kurkiek norite-enderbite (νePR1k) and 8 – diorite-tonalite Impiniem and Yakkim ((δ-ργPR1im δPR1j) complexes; 9 – undifferentiated granites (γPR3); 10 – Ladoga series, biotite gneisses, quartz-mica schists and other metamorphites (PR1ld); 11 – Isojarvin metamorphic sequence, metatuffites (PR1). 12 – syn-folded undifferentiated plutonic complexes, migmatites, granites (mαγAR3); 13 – migmatite-plagiogranite complexes of the Karelian Craton (mργAR2–3); 14 – faults: a – reliable, b – inferred; 15 – Meyer thrust. (c) – region works. Geological basis according to (Maksimov et al., 2015; Stepanov et al., 2004), with changes; geological schemes of the areas of detailed works on the islands, shown by rectangles in (b): 16 – ferrogabbo; 17 – quartz monzonites, 18 – amphibole quartz monzonites; 19 – veins: a – quartz monzonites, b – graphic leucogranites; 20 – contours of rock varieties; 21 – observation points: a – used in this work and in Supplementary 1, ESM_1, b – others.

Download (861KB)
3. Fig. 2. Veins of graphic leucogranite and quartz monzonite in the Valaam sill: (a) and (b) veins in quartz ferromonzogabbro on Lunkulunsaari Island; (c) vein of quartz monzonite in ferrogabbro in the northwestern part of Valaam Island; (d) gently sloping vein of leucogranites in quartz ferromonzogabbro in the southeastern part of Valaam Island; (d) pipe of graphic leucogranite in quartz ferromonzogabbro, Lunkulunsaari Island; (e) scans of thin sections in accordance with the sampling location in Fig. 2e.

Download (1MB)
4. Fig. 3. Backscattered electron (BSE) photographs of the Valaam sill rocks. (a) ferrogabbro, orthopyroxene grows on ferrous olivine grains, symplectite-like intergrowths of ilmenite and magnetite are clearly visible, as well as individual grains of magnetite and apatite (sample 21S-21); (b) quartz ferromonzogabbro. Overgrowth of K-feldspar is observed on plagioclase grains, the spaces between large feldspar grains are filled with granophyre intergrowths of potassium feldspar and quartz (sample 22Ld-06); (c) contact zone between quartz ferrogabbro (right) and the granophyre part of the vein monzonite sample (left). At the contact, there is an increase in K-feldspar on plagioclase grains and replacement of clinopyroxene by chlorite and biotite (sample 21C-22); (d) contact between a vein of graphic leucogranite and quartz ferrogabbro. Rounded clinopyroxene grains are replaced by biotite and actinolite, symplectite-like intergrowths of ilmenite with amphibole are present, apatite is confined to ilmenite and replaced clinopyroxene grains. The gaps are filled with a granophyre aggregate (sample 22Ld-16); (d) graphic leucogranite, feldspar grains are completely or partially replaced by small granophyre intergrowths (GR), onto which larger granophyre intergrowths grow, there are preserved relics of feldspar of a spotted appearance (sample 22Ld-06); (e) graphic leucogranite, granophyre intergrowths of alkali feldspar and quartz develop between feldspar laths, late anhedral masses of quartz and biotite develop in the spaces between the granophyre intergrowths (sample 22Ld-13); (g) graphic leucogranite, a vein filled with quartz and K-feldspar, smoothly turning into granophyre intergrowths of potassium feldspar and quartz (sample 22Ld-06); (z) contact zone between graphic leucogranite and quartz ferrogabbro. At the contact between ferrogabbro, composed of intergrowths of plagioclase and pyroxene, there is an increase in KFS on plagioclase and replacement of clinopyroxene grains by amphibole, a thin vein filled with quartz and carbonate passes through the granophyre, and cavities filled with carbonate are also found in the granophyre (sample 22Ld-06).

Download (1MB)
5. Fig. 4. Microstructures of zircon (a–b, sample 22Ld-32a) and quartz (c–e, sample 22Ld-25) precipitates in graphic leucogranites. (a) and (b) – CL images, zircon luminesces in yellow tones with dark gray veins, apatite is greenish-yellow. (c), (d) and (e) – CL images, quartz luminesces in blue tones, lighter areas have higher Ti concentrations, isolated grains show well-defined growth zoning with dark cores and light peripheral zones; alkali feldspar glows in red tones. (c) – BSE image of the same area as in (d) in CL rays. In the upper left corner in (d) – light gray, in (e) – black – rutile precipitates intergrown with quartz. The circles and numbers next to them are the microprobe analysis points and their numbers.

Download (664KB)
6. Fig. 5. (a) Compositional diagram of pyroxenes from the Valaam sill rocks in the Fe2Si2O6–Mg2Si2O6–CaFeSi2O6–CaMgSi2O6 coordinates. In addition, compositional fields of pyroxenes from granophyres of the Skaergaard massif (Holness et al., 2011), monzosyenites of the Lofoten massif (Coint et al., 2020) and from experimental basaltic melts crystallized at oxygen fugacity corresponding to QFM and +2ΔQFM (Zhang et al., 2023) are presented. (b) Compositional diagram of feldspars from the Valaam sill rocks in the An–Ab–Or coordinates. Additionally, the composition fields of feldspars from granophyres of the Skeergaard massif (Holness et al., 2011) and monzosyenites of the Lofoten massif (Coint et al., 2020) were extracted.

Download (412KB)
7. Fig. 6. Harker diagrams for the rocks of the Valaam sill in comparison with the published compositions of the rocks of the Valaam sill (Sviridenko, Svetov 2008), the rocks of the Salmi massif (Sharkov, 2010), the acidic rocks of the Masurian complex of the AMCG type with an age of 1.49 Ga (Grabarchuk, 2023) and experimental data for the crystallization of basalts of the Emeishian province (Zhang et al., 2023).

Download (541KB)
8. Fig. 7. (a) SiO2–(Na2O + K2O) diagram for the rocks of the Valaam sill and (b) crystallization trend in the AFM diagram of the rocks of the Valaam sill and the Salmi massif. For the Valaam sill, data are also given from (Sviridenko, Svetov, 2008), for the Salmi massif from (Sharkov, 2010; Larin, 2011), for the Masurian complex from (Grabarchuk et al., 2023).

Download (292KB)
9. Fig. 8. Characteristics of graphic leucogranites by: (a) SiO2 and (Na2O + K2O – CaO) content, boundaries between alkaline, alkaline-calcite, calc-alkaline and calcite granitoids according to (Frost, Frost 2011); (b) the content of alumina A/NK (Al2O3/(Na2O + K2O)–A/CNK (Al2O3/(CaO + Na2O + K2O), in moles; (c) the Fe index (FeO + 0.9Fe2O3)/(FeO + 0.9Fe2O3 + MgO) (Frost et al., 2001) in comparison with the acidic rocks of the Valaam sill (Sviridenko, Svetov, 2008), Salmi massif (Sharkov, 2010) and Pietkowo massif in Poland (Grabarchuk et al., 2023)

Download (240KB)
10. Fig. 9. Rocks of the Valaam sill, normalized to (a) CI chondrite (Sun, McDonough, 1989); the mafic and intermediate rocks have similar distribution spectra with a weak positive anomaly Eu/Eu* = 1.1–1.2, in the graphic leucogranites a negative anomaly Eu/Eu* = 0.15–0.49 is observed. Normalized to (b) primitive mantle after (Sun, McDonough, 1989). Negative anomalies of Sr, Nb, Ta and Ti are observed in all rocks, a positive P-anomaly is characteristic of ferrogabbro; positive anomalies of K, Zr and Hf appear in the graphic leucogranites.

Download (269KB)
11. Fig. 10. Results of modeling the evolution of the Valaam sill melts in Melts on Harker diagrams. Model 1 for a dry melt (0.2 wt.% H2O) under reducing conditions (ΔQFM-1) and model 2 for a melt with a higher water content (1.2 wt.% H2O) under more oxidizing conditions (QFM) are shown. Asterisks indicate the compositions of the Valaam sill melts. Also shown are the compositions of high-Ti and low-Ti basalts of the Emeishian province as an example of typical continental tholeiites and the evolution of tholeiitic basalt melts in the experiments (Zhang et al., 2023) and (Botcharnikov et al., 2008) for hydrous (–h) and dry (–d) conditions.

Download (635KB)
12. Fig. 11. The εNd–age (million years) diagram for the rocks of the Ladoga region. For the rocks of the Valaam Sill, our data and data from (Ramo 1991) were used, for the rocks of the Salmi Massif – from (Larin, 2011). The purple area shows the evolutionary trend for the Paleoproterozoic rocks of the North Ladoga region (Konopelko et al., 2005), for the Archean rocks of the western Karelian Craton – from (Larionova et al., 2007).

Download (124KB)
13. Fig. 12. Comparison of natural and model compositions of the Valaam sill melts with natural and experimental compositions in which immiscibility between Si- and Fe-enriched melts was observed. (a) Models 1 and 2 of the evolution of the Valaam sill melts calculated in Melts, and the lines of experimental compositions of high-Ti - green dotted line and low-Ti - red dotted line of tholeiitic basalts (Zhang et al., 2023); gray line - Melts model for high-Ti basalt from experiments (Zhang et al., 2023). The position of the bimodal is shown by the solid line after (Zhang et al., 2023) and the dotted line - after (Charlier, Grove, 2012). NBO/T is the proportion of non-bridging oxygens in the melt. (b) – compositions of the rocks of the Valaam sill (asterisks) and models 1 and 2 of the evolution of Valaam melts calculated in Riolythe-Melts, compositions of Si- (blue field) and Fe- (brown field) enriched melts obtained in the experiments (Lino et al., 2023), as well as compositions of the rocks of the Limeira massif, which were used as starting compositions in these experiments (gray field) and aplites in this massif (Lino et al., 2023); the position of the boundary of the immiscibility region (blue line) is shown for alkali-enriched tholeiitic basalt according to (Lino et al., 2023).

Download (359KB)
14. Fig. 13. Microstructures of Fe-Ti oxide segregations in quartz monzonites of the Valaam sill: (a) – Fe-Ti oxide segregation embedded in granophyre aggregate, segregation consists of thin intergrowths of ilmenite and alkali feldspar in the center, contains inclusions of apatite, ilmenite is partially replaced by titanite, the marginal part of the segregation is composed of magnetite; (b) – detail in Fig. (a), highlighted by red rectangle, BSE; (c) – ilmenite-silicate intergrowth in the central part of the segregation and with a peripheral part of ilmenite with rounded sulfide inclusions, another rounded sulfide segregation nearby, in the upper right part of the image, reflected light; (g) – Fe-Ti oxides precipitate in the form of fine intergrowths of ilmenite with alkali feldspar, surrounded by magnetite with euhedral contours, BSE; (d) – coarse worm-like intergrowths of ilmenite with amphibole, with a rim of magnetite, BSE; (e) – ilmenite-silicate intergrowths (marked with a red arrow) in a granophyre aggregate, BSE; (g) – ilmenite-titanite-apatite intergrowth in a granophyre aggregate, BSE.

Download (973KB)
15. Fig. 14. Zr/Hf–Nb/Ta (a) and Ba–Rb/Sr (b) diagrams for the rocks of the Valaam sill and the Salmi pluton. The acidic rocks of the Valaam sill fall into the region of weakly fractionated rocks; for comparison, the data for strongly fractionated granites from (Wu et al., 2017) and the data for the Salmi pluton from (Larin, 2011) are plotted.

Download (266KB)
16. Fig. 15. Schematic representations of the crystallization order of the initial melt of the Valaam sill rocks: (a) magmatic stage, early crystallization of clinopyroxene and plagioclase crystals, evolution of the main melt into monzonite; (b) magmatic stage, continuation of fractional crystallization; separation into high-Fe melt in the form of droplets in the matrix of high-Si melt; (c) magmatic stage, continuation of fractional crystallization, formation of clusters of high-Fe melt in the form of ilmenite intergrowths, crystallization of amphibole rims on clinopyroxene and potassium feldspar rims on plagioclase from the acid melt; (d) late magmatic stage, formation of granophyre structure, formation of micromiaroles, interaction with the host rocks.

Download (660KB)
17. Supplementary 1, ESM – Location of the studied samples on the islands of Valaam, Lunkulunsaari
Download (199KB)
18. Supplementary 2, ESM – Methods
Download (325KB)
19. Supplementary 3, ESM – Mineral Compositions
Download (93KB)
20. Supplementary 4, ESM – Chemical composition of the studied samples of the Valaam sill
Download (24KB)
21. Supplementary 5, ESM – Ti concentration in quartz and calculation of saturation temperature for Zr
Download (10KB)
22. Supplementary 6, ESM – Model 1 of fractional crystallization of ferrogabbro melt calculated in the Melts software package
Download (22KB)
23. Supplementary 7, ESM – Model 2 of fractional crystallization of ferrogabbro melt calculated in the Melts software package
Download (27KB)
24. Supplementary 8, ESM – Mass balance calculation of fractional crystallization of ferrogabbro melt
Download (11KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies