PLURIPOTENCY AND PERSPECTIVES OF CELL TECHNOLOGIES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Biology of pluripotency is a modern field of biological science, and at the same time a tool for modeling human morphogenesis in vitro. Pluripotency is the property of cells to self-renew and differentiate into all types of cells of an adult organism, which appears in early embryogenesis in mammals. Pluripotent stem cells (PSCs) have limitless potential in regenerative and translational medicine, which open up perspectives for solving multiple diseases, including hereditary ones. This review describes the characteristics and uniqueness of PSCs, modeling of early human morphogenesis in vitro in blastocyst-like structures and gastruloids, modeling of organogenesis in organoids. Next, we considered the use of PSCs in regenerative medicine with their risks of capability to oncogenicity and immunogenicity in implication of a cell replacement therapy. However, therapeutic approaches using PSCs are still in their infancy and need to be deeply scrutinized.

About the authors

E. D. Erofeeva

N.K. Koltzov Institute of Developmental Biology Russian Academy of Sciences

Email: vestnik.ran@yandex.ru
Russia, Moscow

V. K. Abdyev

N.K. Koltzov Institute of Developmental Biology Russian Academy of Sciences

Email: vestnik.ran@yandex.ru
Russia, Moscow

A. V. Yeremeyev

N.K. Koltzov Institute of Developmental Biology Russian Academy of Sciences; Y.M. Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, FMBA of Russia

Email: vestnik.ran@yandex.ru
Russia, Moscow; Russia, Moscow

E. A. Vorotelyak

N.K. Koltzov Institute of Developmental Biology Russian Academy of Sciences; Biological Faculty of Lomonosov Moscow State University

Email: vestnik.ran@yandex.ru
Russia, Moscow; Russia, Moscow

A. V. Vasiliev

N.K. Koltzov Institute of Developmental Biology Russian Academy of Sciences; Biological Faculty of Lomonosov Moscow State University

Author for correspondence.
Email: vestnik.ran@yandex.ru
Russia, Moscow; Russia, Moscow

References

  1. Smith A.G. Embryo-Derived Stem Cells: Of Mice and Men // Annual Review of Cell and Developmental Biology. 2001. V. 17. № 1. P. 435–462.
  2. Lee A.S., Tang C., Rao M.S. et al. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies // Nat. Med. 2013. V. 19. № 8. P. 998–1004.
  3. Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos // Nature. 1981. V. 292. № 5819. P. 154–156.
  4. Zacharias D.G., Nelson T.J., Mueller P.S., Hook C.C. The Science and Ethics of Induced Pluripotency: What Will Become of Embryonic Stem Cells? // Mayo Clinic Proceedings. 2011. V. 86. № 7. P. 634–640.
  5. Hochedlinger K., Jaenisch R. Nuclear reprogramming and pluripotency // Nature. 2006. V. 441. № 7097. P. 1061–1067.
  6. Takahashi K., Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors // Cell. 2006. V. 126. № 4. P. 663–676.
  7. Rowe R.G., Daley G.Q. Induced pluripotent stem cells in disease modelling and drug discovery // Nat. Rev. Genet. 2019. V. 20. № 7. P. 377–388.
  8. Ying Q.-L., Wray J., Nichols J. et al. The ground state of embryonic stem cell self-renewal // Nature. 2008. V. 453. May. P. 519–23.
  9. Levenstein M.E., Ludwig T.E., Xu R.-H. et al. Basic Fibroblast Growth Factor Support of Human Embryonic Stem Cell Self-Renewal // Stem Cells. 2006. V. 24. № 3. P. 568–574.
  10. Vallier L., Mendjan S., Brown S. et al. Activin/Nodal signalling maintains pluripotency by controlling Nanog expression // Development. 2009. V. 136. № 8. P. 1339–1349.
  11. Ávila-González D., Portillo W., García-López G. et al. Unraveling the Spatiotemporal Human Pluripotency in Embryonic Development // Frontiers in Cell and Developmental Biology. 2021. V. 9. P. 1539.
  12. Liu L., Michowski W., Inuzuka H. et al. G1 cyclins link proliferation, pluripotency and differentiation of embryonic stem cells // Nat. Cell Biol. 2017a. V. 19. № 3. P. 177–188.
  13. Liu X., Nefzger C.M., Rossello F.J. et al. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming // Nature Publishing Group. 2017b. № September.
  14. Neagu A., van Genderen E., Escudero I. et al. In vitro capture and characterization of embryonic rosette-stage pluripotency between naive and primed states // Nature Cell Biology. 2020. V. 22 № 5. P. 534–545. https://doi.org/10.1038/s41556-020-0508-x
  15. Gordeev M.N., Bakhmet E.I., Tomilin A.N. Pluripotency Dynamics during Embryogenesis and in Cell Culture // Russian Journal of Developmental Biology. 2021. V. 52. № 6. P. 379–389.
  16. Sim Y.-J., Kim M.-S., Nayfeh A. et al. 2i Maintains a Naive Ground State in ESCs through Two Distinct Epigenetic Mechanisms // Stem Cell Reports. 2017. V. 8. № 5. P. 1312–1328.
  17. Novo C.L. A Tale of Two States: Pluripotency Regulation of Telomeres // Frontiers in Cell and Developmental Biology. 2021. V. 9.
  18. Nichols J., Smith A. Naive and Primed Pluripotent States // Cell Stem Cell. 2009. V. 4. № 6. P. 487–492.
  19. Lagarkova M.A., Eremeev A.V., Svetlakov A.V. et al. Human embryonic stem cell lines isolation, cultivation, and characterization // In Vitro Cellular & Developmental Biology – Animal. 2010. V. 46. № 3–4. P. 284–293.
  20. Rossant J., Tam P.P.L. New insights into early human development: lessons for stem cell derivation and differentiation // Cell Stem Cell. 2017. V. 20. № 1. P. 18–28.
  21. Dahéron L., Opitz S.L., Zaehres H. et al. LIF/STAT3 Signaling Fails to Maintain Self-Renewal of Human Embryonic Stem Cells // Stem Cells. 2004. V. 22. № 5. P. 770–778.
  22. Kinoshita M., Smith A. Pluripotency Deconstructed // Development Growth and Differentiation. 2018. V. 60. № 1. P. 44–52.
  23. Kinoshita M., Barber M., Mansfield W. et al. Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency // Cell Stem Cell. 2021. V. 28. № 3. P. 453–471.e8.
  24. Hoogland S.H.A., Marks H. Developments in pluripotency: a new formative state // Cell Research. 2021. V. 31. № 5. P. 493–494.
  25. Yeh C.Y., Huang W.H., Chen H.C., Meir Y.J.J. Capturing Pluripotency and Beyond // Cells. 2021. V. 10. № 12. P. 3558.
  26. Abdyyev V.K., Sant D.W., Kiseleva E.V. et al. In vitro derived female hPGCLCs are unable to complete meiosis in embryoid bodies // Experimental Cell Research. 2020. V. 397. № 2. P. 112358.
  27. Nakano T., Ando S., Takata N. et al. Self-Formation of Optic Cups and Storable Stratified Neural Retina from Human ESCs // Cell Stem Cell. 2012. V. 10. № 6. P. 771–785.
  28. Nestor M.W., Paull D., Jacob S. et al. Differentiation of serum-free embryoid bodies from human induced pluripotent stem cells into networks // Stem Cell Research. 2013. V. 10. № 3. P. 454–463.
  29. Yabe S.G., Nishida J., Fukuda S. et al. Definitive endoderm differentiation is promoted in suspension cultured human iPS-derived spheroids more than in adherent cells // Int. J. Dev. Biol. 2019. V. 63. № 6–7. P. 271–280.
  30. Darabi R., Gehlbach K., Bachoo R.M. et al. Functional skeletal muscle regeneration from differentiating embryonic stem cells // Nat Med. 2008. V. 14. № 2. P. 134–143.
  31. Shahbazi M.N., Zernicka-Goetz M. Deconstructing and reconstructing the mouse and human early embryo // Nat. Cell Biol. 2018. V. 20. № 8. P. 878–887.
  32. Harrison S.E., Sozen B., Christodoulou N. et al. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro // Science. 2017. V. 356. № 6334. P. eaal1810.
  33. Rivron N.C., Frias-Aldeguer J., Vrij E.J. et al. Blastocyst-like structures generated solely from stem cells // Nature. 2018. V. 557. № 7703. P. 106–111.
  34. Moris N., Anlas K., Brink S.C. van den et al. An in vitro model of early anteroposterior organization during human development // Nature. 2020. V. 582. № 7812. P. 410–415.
  35. Brink S.C. van den, Alemany A., Batenburg V. van et al. Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids // Nature. 2020. V. 582. № 7812. P. 405–409.
  36. Berlo D. van, Nguyen V.V.T., Gkouzioti V. et al. Stem cells, organoids, and organ-on-a-chip models for personalized in vitro drug testing // Current Opinion in Toxicology. 2021. V. 28. P. 7–14.
  37. McCracken K.W., Catá E.M., Crawford C.M. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids // Nature. 2014. V. 516. № 7531. P. 400–404.
  38. Churin Y., Al-Ghoul L., Kepp O. et al. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response // J Cell Biol. 2003. V. 161. № 2. P. 249–255.
  39. Provin N., Giraud M. Differentiation of Pluripotent Stem Cells Into Thymic Epithelial Cells and Generation of Thymic Organoids: Applications for Therapeutic Strategies Against APECED // Frontiers in Immunology. 2022. V. 13. P.930963
  40. Koehler K.R., Hashino E. 3D mouse embryonic stem cell culture for generating inner ear organoids // Nat. Protoc. 2014. V. 9. № 6. P. 1229–1244.
  41. Miyake T., Shimada M. 3D Organoid Culture Using Skin Keratinocytes Derived from Human Induced Pluripotent Stem Cells // Induced Pluripotent Stem (iPS) Cells: Methods and Protocols Methods in Molecular Biology / A. Nagy, K. Turksen (ed.). New York: Springer US, 2022. P. 285–295.
  42. Sahu S., Sharan S.K. Translating Embryogenesis to Generate Organoids: Novel Approaches to Personalized Medicine // iScience. 2020. V. 23. № 9. P. 101485.
  43. Muguruma K., Nishiyama A., Kawakami H. et al. Self-Organization of Polarized Cerebellar Tissue in 3D Culture of Human Pluripotent Stem Cells // Cell Reports. 2015. V. 10. № 4. P. 537–550.
  44. Amin N.D., Paşca S.P. Building Models of Brain Disorders with Three-Dimensional Organoids // Neuron. 2018. V. 100. № 2. P. 389–405.
  45. Yoon K.-J., Song G., Qian X. et al. Zika-Virus-Encoded NS2A Disrupts Mammalian Cortical Neurogenesis by Degrading Adherens Junction Proteins // Cell Stem Cell. 2017. V. 21. № 3. P. 349–358.e6.
  46. Quadrato G., Nguyen T., Macosko E.Z. et al. Cell diversity and network dynamics in photosensitive human brain organoids // Nature. 2017. V. 545. № 7652. P. 48–53.
  47. Eremeev A.V., Lebedeva O.S., Bogomiakova M.E. et al. Cerebral Organoids – Challenges to Establish a Brain Prototype // Cells. 2021. V. 10. № 7. P. 1790.
  48. Berger E., Magliaro C., Paczia N. et al. Millifluidic culture improves human midbrain organoid vitality and differentiation // Lab. on a Chip. 2018. V. 18. № 20. P. 3172–3183.
  49. Mansour A.A., Gonçalves J.T., Bloyd C.W. et al. An in vivo model of functional and vascularized human brain organoids // Nat. Biotechnol. 2018. V. 36. № 5. P. 432–441.
  50. Еремеев А.В., Воловиков Е.А., Шувалова Л.Д., Давиденко А.В., Хомякова Е.А., Богомякова М.Е., Лебедева О.С., Зубкова О.А., Лагарькова М.А. “Голь на выдумки хитра”, или дешёвый, надёжный и воспроизводимый способ получения органоидов // Биохимия. 2019. V. 84. P. 448–456.
  51. Kiernan M.C., Vucic S., Cheah B.C. et al. Amyotrophic lateral sclerosis // The Lancet. 2011. V. 377. № 9769. P. 942–955.
  52. Martin L.J., Price A.C., Kaiser A. et al. Mechanisms for neuronal degeneration in amyotrophic lateral sclerosis and in models of motor neuron death (Review) // International Journal of Molecular Medicine. 2000. V. 5. № 1. P. 3–16.
  53. Di Giorgio F.P., Boulting G.L., Bobrowicz S., Eggan K.C. Human Embryonic Stem Cell-Derived Motor Neurons Are Sensitive to the Toxic Effect of Glial Cells Carrying an ALS-Causing Mutation // Cell Stem Cell. 2008. V. 3. № 6. P. 637–648.
  54. Karumbayaram S., Novitch B.G., Patterson M. et al. Directed Differentiation of Human-Induced Pluripotent Stem Cells Generates Active Motor Neurons // Stem Cells. 2009. V. 27. № 4. P. 806–811.
  55. Carr A.-J., Vugler A.A., Hikita S.T. et al. Protective Effects of Human iPS-Derived Retinal Pigment Epithelium Cell Transplantation in the Retinal Dystrophic Rat // PLOS ONE. 2009. V. 4. № 12. P. e8152.
  56. Buchholz D.E., Hikita S.T., Rowland T.J. et al. Derivation of Functional Retinal Pigmented Epithelium from Induced Pluripotent Stem Cells // Stem Cells. 2009. V. 27. № 10. P. 2427–2434.
  57. Nelson T.J., Martinez-Fernandez A., Yamada S. et al. Repair of Acute Myocardial Infarction by Human Stemness Factors Induced Pluripotent Stem Cells // Circulation. 2009. V. 120. № 5. P. 408–416.
  58. Абдыев В.К., Дашинимаев Э.Б., Неклюдова И.В. и др. Современные технологии получения первичных половых клеток человека in vitro // Биохимия. 2019. V. 84. № 3. P. 330–342.
  59. Lyadova I., Gerasimova T., Nenasheva T. Macrophages Derived From Human Induced Pluripotent Stem Cells: The Diversity of Protocols, Future Prospects, and Outstanding Questions // Frontiers in Cell and Developmental Biology. 2021. № 9.
  60. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S. et al. Embryonic Stem Cell Lines Derived from Human Blastocysts // Science. 1998. V. 282. № 5391. P. 1145–1147.
  61. Ben-David U., Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells // Nat. Rev. Cancer. 2011. V. 11. № 4. P. 268–277.
  62. Martin G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells // Proc. Natl. Acad. Sci. USA. 1981. V. 78. № 12. P. 7634–7638.
  63. Shih C.-C., Forman S.J., Chu P., Slovak M. Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice // Stem Cells Dev. 2007. V. 16. № 6. P. 893–902.
  64. Doi D., Morizane A., Kikuchi T. et al. Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson’s disease // Stem Cells. 2012. V. 30. № 5. P. 935–945.
  65. Schoenhals M., Kassambara A., De Vos J. Embryonic stem cell markers expression in cancers // Biochemical and biophysical research communications. 2009. V. 383. № 2.
  66. Ben-Porath I., Thomson M.W., Carey V.J. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors // Nat. Genet. 2008. V. 40. № 5. P. 499–507.
  67. Soldner F., Hockemeyer D., Beard C. et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors // Cell. 2009. V. 136. № 5. P. 964–977.
  68. Warren L., Manos P.D., Ahfeldt T. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA // Cell Stem Cell. 2010. V. 7. № 5. P. 618–630.
  69. Ban H., Nishishita N., Fusaki N. et al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors // Proc. Nat. Acad. Sci. USA. 2011. V. 108. № 34. P. 14234–14239.
  70. Pearl J.I., Kean L.S., Davis M.M., Wu J.C. Pluripotent Stem Cells: Immune to the Immune System? // Science Translational Medicine. 2012. V. 4. № 164. P. 164ps25-164ps25.
  71. Guha P., Morgan J.W., Mostoslavsky G. et al. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells // Cell Stem Cell. 2013. V. 12. № 4. P. 407–412.
  72. Hanna J.H., Saha K., Jaenisch R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues // Cell. 2010. V. 143. № 4. P. 508–525.
  73. Bogomiakova M.E., Sekretova E.K., Anufrieva K.S. et al. iPSC-derived cells lack immune tolerance to autologous NK-cells due to imbalance in ligands for activating and inhibitory NK-cell receptors // Stem Cell Res. Ther. 2023. V. 14. № 1. P. 77.
  74. Zheng D., Wang X., Xu R.-H. Concise Review: One Stone for Multiple Birds: Generating Universally Compatible Human Embryonic Stem Cells // Stem Cells. 2016. V. 34. № 9. P. 2269–2275.
  75. Bogomiakova M.E., Eremeev A.V., Lagarkova M.A. At Home among Strangers: Is It Possible to Create Hypoimmunogenic Pluripotent Stem Cell Lines? // Mol. Biol. 2019. V. 53. № 5. P. 638–652.
  76. Taylor C.J., Peacock S., Chaudhry A.N. et al. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types // Cell Stem Cell. 2012. V. 11. № 2. P. 147–152.
  77. Curtis E., Martin J.R., Gabel B. et al. A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury // Cell Stem Cell. 2018. V. 22. № 6. P. 941–950.e6.
  78. HeartWorks, Inc. Safety and Feasibility of Autologous Induced Pluripotent Stem Cells of Cardiac Lineage in Subjects With Congenital Heart Disease: clinicaltrials.gov, 2023. https://clinicaltrials.gov/study/NCT05647213
  79. Beijing Tongren Hospital. Safety and Efficacy of Autologous Transplantation of Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium in the Treatment of Macular Degeneration: clinicaltrials.gov, 2022. https://hpscreg.eu/browse/trial/119
  80. Choi S.M., Kim Y., Shim J.S. et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells // Hepatology. 2013. V. 57. № 6. P. 2458–2468.
  81. Lu H.R., Vlaminckx E., Hermans A.N. et al. Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines // Br. J. Pharmacol. 2008. V. 154. № 7. P. 1427–1438.
  82. Liang P., Lan F., Lee A.S. et al. Drug Screening Using a Library of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes Reveals Disease-Specific Patterns of Cardiotoxicity // Circulation. 2013. V. 127. № 16. P. 1677–1691.
  83. Tucker B.A., Mullins R.F., Stone E.M. Stem cells for investigation and treatment of inherited retinal disease // Human Molecular Genetics. 2014. V. 23. № R1. P. R9–R16.
  84. Sinenko S.A., Skvortsova E.V., Liskovykh M.A. et al. Transfer of Synthetic Human Chromosome into Human Induced Pluripotent Stem Cells for Biomedical Applications // Cells. 2018. V. 7. № 12. P. 261.
  85. Hanna J., Wernig M., Markoulaki S. et al. Treatment of Sickle Cell Anemia Mouse Model with iPS Cells Generated from Autologous Skin // Science. 2007. V. 318. № 5858. P. 1920–1923.
  86. Raya Á., Rodríguez-Pizà I., Guenechea G. et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells // Nature. 2009. V. 460. № 7251. P. 53–59.

Copyright (c) 2023 Е.Д. Ерофеева, В.К. Абдыев, А.В. Еремеев, Е.А. Воротеляк, А.В. Васильев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies