Influence of nickel impurities on the operational parameters of a silicon solar cell

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of studies of the influence of nickel impurities introduced by diffusion into monocrystalline silicon on the characteristics of solar cells are presented. It has been established that doping with nickel atoms makes it possible to increase the lifetime of minority charge carriers in the material by up to 2 times, and the efficiency of solar cells by 20–25%. It was shown that the distribution of nickel clusters in the volume of the material is almost uniform, and their size does not exceed 0.5 μm. The concentration of clusters in the volume is ~1011–1013 cm–3, and in the near-surface layer — ~1013–1015 cm–3. The physical mechanisms of the influence of bulk and near-surface clusters of nickel atoms on the efficiency of silicon solar cells have been identified. It has been established experimentally that the processes of gettering of recombination-active technological impurities by nickel clusters, which occur in the nickel-enriched front surface region of solar cells, play a decisive role in increasing their efficiency.

全文:

受限制的访问

作者简介

Z. Kenzhaev

Tashkent State Technical University

编辑信件的主要联系方式.
Email: zoir1991@bk.ru
乌兹别克斯坦, Tashkent

N. Zikrillaev

Tashkent State Technical University

Email: zoir1991@bk.ru
乌兹别克斯坦, Tashkent

V. Odzhaev

Belarussian State University

Email: zoir1991@bk.ru
白俄罗斯, Minsk

K. Ismailov

Karakalpak State University

Email: zoir1991@bk.ru
乌兹别克斯坦, Nukus

V. Prosolovich

Belarussian State University

Email: zoir1991@bk.ru
白俄罗斯, Minsk

Kh. Zikrillaev

Tashkent State Technical University

Email: zoir1991@bk.ru
乌兹别克斯坦, Tashkent

S. Koveshnikov

Tashkent State Technical University

Email: zoir1991@bk.ru
乌兹别克斯坦, Tashkent

参考

  1. Green M. et al. Solar cell efficiency tables (version 58) // Prog Photovolt Res Appl. 2021. V. 29. P. 657–667. https://doi.org/10.1002/pip.3444
  2. Ikhmayies Sh. Advances in Silicon Solar Cells // Springer International Publishing. 2018. P. 337. https://doi.org/10.1007/978-3-319-69703-1
  3. Panaiotti I.E., Terukov E.I. A Study of the Effect of Radiation on Recombination Loss in Heterojunction Solar Cells Based on Single-Crystal Silicon // Tech. Phys. Lett. 2019. V. 45. Nо. 3. P. 193–196. https://doi.org/10.1134/S106378501903012X
  4. Richter A. et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses // Nature Energy. 2021. V. 6. P. 429–438. https://doi.org/10.1038/s41560-021-00805-w
  5. Koval’chuk N.S. et al. Yankovskii Influence of Structural Defects on the Electrophysical Parameters of pin-Photodiodes // Russian Microelectronics. 2023. V. 52. No. 4. Р. 276–282. DOI: S054412692370045X.
  6. Yatsukhnenko S. et al. Nanoscale Conductive Channels in Silicon Whiskers with Nickel Impurity // Nanoscale Res Lett. 2017. V. 12. Nо. 78. P. 1–7. https://doi.org/10.1186/s11671-017-1855-9
  7. Liu A., Phang S.P., Macdonald D. Gettering in silicon photovoltaics: A review // Solar Energy Materials and Solar Cells. 2022. V. 234. P. 111447. https://doi.org/10.1016/j.solmat.2021.111447
  8. Chistyakova A.A., Bazhanov D.I. The Study of Nickel Impurity Segregation on LSNT Perovskite Open Surfaces by Ab Initio Molecular Dynamics // Russ Microelectron. 2022. V. 51. P. 654–658. https://doi.org/10.1134/S1063739722080121
  9. Bayrambay I. et al. Suppression of harmful impurity atoms with clusters of nickel impurity atoms in a silicon lattice // AIP Conference Proceedings. 2022. V. 2552. P. 060015. https://doi.org/10.1063/5.0129486
  10. Spit F.H.M., Gupta D., Tu K.N. Diffusivity and solubility of Ni (63Ni) in monocrystalline Si // Phys. Review B. 1989. V. 39. P. 1255–1260.
  11. Lindroos J. et al. Nickel: A very fast diffuser in silicon // J. Appl. Phys. 2013. V. 113. P. 204906. https://doi.org/10.1063/1.4807799
  12. Bakhadyrkhanov M.K. et al. Studying the Effect of Doping with Nickel on Silicon-Based Solar Cells with a Deep p—n-Junction // Tech. Phys. Lett. 2019. V. 45. Nо. 10. P. 959–962. https://doi.org/10.1134/S1063785019100031
  13. Bakhadyrkhanov M.K. et al. Silicon Photovoltaic Cells with Deep p—n-Junction // Appl. Sol. Energy. 2020. V. 56. Nо. 1. P. 13–17. https://doi.org/10.3103/S0003701X2001003X
  14. Bakhadyrkhanov M.K., Kenzhaev Z.T. Optimal Conditions for Nickel Doping to Improve the Efficiency of Silicon Photoelectric Cells // Tech. Phys. 2021. V. 66. Nо. 7. P. 851–856. https://doi.org/10.1134/S1063784221060049
  15. Bakhadirkhanov M.K. et al. Gettering properties of nickel in silicon photocells // Tech. Phys. 2022. V. 67. Nо. 14. P. 2217–2220. doi: 10.21883/TP.2022.14.55221.99-21.
  16. Zikrillayev N. et al. Effect of nickel doping on the spectral sensitivity of silicon solar cells // E3S Web of Conferences. 2023. V. 434. P. 01036 (1–3). https://doi.org/10.1051/e3sconf/202343401036
  17. Kenzhaev Z.T. et al. Enhancing the Efficiency of Silicon Solar Cells through Nickel Doping // Surf. Engin. Appl. Electrochem. 2023. V. 59. Nо. 6. P. 858–866. https://doi.org/10.3103/S1068375523060108
  18. Kerimov E.A. Study of Photodetectors with Schottky Barriers Based on the IrSi—Si Contact // Russ Microelectron. 2023. V. 52. P. 32–34. https://doi.org/10.1134/S1063739722030040
  19. Dubovikov K.M., Kovaleva M.A. Effect of Annealing Temperature on the Surface Structure and Properties of Porous TiNi // Inorg. Mater. 2021. Nо. 57. P. 1242–1249. https://doi.org/10.1134/S0020168521120050
  20. Koveshnikov S., Kononchuk O. Gettering of Cu and Ni in mega-electron-volt ion-implanted epitaxial silicon // Appl. Phys. Lett. 1998. V. 73. Nо. 16. P. 2340. https://doi.org/10.1063/1.122455
  21. Togatov V.V., Gnatyuk P.A. A method for measuring the lifetime of charge carriers in the base regions of high-speed diode structures // Semiconductors. 2005. V. 39. P. 360–363. https://doi.org/10.1134/1.1882802
  22. Mil’vidskii M.G., Chaldyshev V.V. Nanometer-size atomic clusters in semiconductors — a new approach to tailoring material properties // Semiconductors. 1998. V. 32. Nо. 5. P. 457–465. https://doi.org/10.1063/1.4807799
  23. Gafner Y.Y., Gafner S.L., Entel P. Formation of an icosahedral structure during crystallization of nickel nanoclusters // Phys. Solid State. 2004. V. 46. No. 7. P. 1327–1330. https://doi.org/10.1134/1.1778460
  24. Tanaka Sh., Ikari T., Kitagawa H. In-Diffusion and Annealing Processes of Substitutional Nickel Atoms in Dislocation-Free Silicon // Jpn. J. Appl. Phys. 2001. V. 40. No. 5R. P. 3063–3068. doi: 10.1143/JJAP.40.3063.
  25. Ismaylov B.K. et al. Clusters of impurity nickel atoms and their migration in the crystal lattice of silicon // Physical Sciences and Technology. 2023. V. 10. Nо. 1. P. 13–18. https://doi.org/10.26577/phst.2023.v10.i1.02
  26. Serafina B. Conversion of solar energy. Moscow: Energoizdat, 1982. 320 p. [in Russian].
  27. Emslie J. Elements: Directory. Translation from English. Moscow, 1993. 256 p. [in Russian].
  28. Afanasyeva N.P., Brinkevich D.I., Prosolovich V.S., Yankovsky Y.N. Lanthanoid doping of silicon as a way to optimize the parameters of ionizing radiation detectors // Instrumentation and Experimental Technique. 2002. No. 2. P. 24–26 (in Russian).
  29. Dutov A.G., Komar V.A., Petrov V.V., Prosolovich V.S., Chesnokov S.A., Yankovsky Y.N. Getterization of technological impurities by rare-earth elements in silicon // Proceedings of the 7th Intern. Conf. on Microelectronics. Minsk, 1990. No. 1. P. 34–36 [in Russian].
  30. Egorov S.N. Calculation of the surface energy of metals in the solid state // Izvestiya Vuzov. North-Caucasian region. 2003. No. 3. P. 132–136 [in Russian].
  31. Dellis S. et al. Electrochemical synthesis of large diameter monocrystalline nickel nanowires in porous alumina membranes // J. Appl. Phys. 2013. V. 114. P. 164308. https://doi.org/10.1063/1.4826900

补充文件

附件文件
动作
1. JATS XML
2. Fig.1.

下载 (78KB)
3. Fig.2.

下载 (145KB)
4. Fig.3.

下载 (631KB)
5. Fig.4.

下载 (131KB)
6. Fig.5.

下载 (517KB)
7. Fig.6.

下载 (115KB)
8. Fig.7.

下载 (88KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##