Molecular Layering of an Additive Layer of Silicon Dioxide on Anodized Tantalum and Niobium Oxides

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of studying the processes of formation of nanolayers of silicon oxide by the method of molecular layering (atomic layer deposition) on the surface of films of tantalum and niobium oxides obtained by electrochemical oxidation of the corresponding metals are presented. A study of the electrical strength of metal-dielectric-metal (MDM) structures based on tantalum and niobium oxides showed that the introduction of an additive dielectric layer (SiO2) can significantly increase the electrical strength of these structures.

Sobre autores

Yu. Ezhovskii

St. Petersburg State Technological Institute (Technical University)

Autor responsável pela correspondência
Email: ezhovski1@mail.ru
Rússia, St. Petersburg

S. Mikhailovskii

St. Petersburg State Technological Institute (Technical University)

Email: ezhovski1@mail.ru
Rússia, St. Petersburg

Bibliografia

  1. Gorbachev I.P., Sashov A.A. Method for identifying internal defects in tantalum capacitors to reduce the number of equipment failures // Rocket and space instrument making and information systems. 2019. T. 6. Iss. 1. P. 94–101.
  2. Mbisike S., Tsiamis A., Lomax P., Cheung R. Anodic tantalum: Fabrication, breakdown characteristics of capacitor and integration with a WSe2 field effect transistor // Solid State Electronics. 2022. V. 196. P. 108423. 4 p. https://doi.org/10.1016/j.sse.2022.108423
  3. Baldomá S.В., Pazos S.M., Aguirre F.L. et al. Wear-out and breakdown of Ta2O5 / Nb: SrTiO3 stacks // Solid State Electronics. 2022. V. 198. P. 108462. 6 p. https://doi.org/10.1016/j.sse.2022.108462
  4. Raeis-Hosseini N., Chen Sh., Papavassiliou Ch., Valov I. Impact of Zr top electrode on tantalum oxide-based electrochemical metallization resistive switching memory: towards synaptic functionalities // RSC Adv. 2022. V. 12. Iss. 22. P. 14235–14245. https://doi.org/10.1039/d2ra02456j
  5. Molinnus D., Iken H., Johnen A. et al. Miniaturized pH-Sensitive Field-Effect Capacitors with Ultrathin Ta2O5 Films Prepared by Atomic Layer Deposition // Phys. Status Solidi A. 2022. V. 219. Iss. 8. P. 2100660, 9 p. https://doi.org/10.1002/pssa.202100660
  6. Cho K., Lee J., Lim J.-S. et al. Low temperature crystallized Ta2O5/Nb2O5 bi-layers integrated into RIR capacitor for 60 nm generation and beyond // Microelectronic Engineering. 2005. V. 80. P. 317–320. https://doi.org/10.1016/j.mee.2005.04.032
  7. Störmer H., Weber A., Fischer V. et al. Anodically formed oxide films on niobium: Microstructural and electrical properties // Journal of the European Ceramic Society. 2009. V. 29. Iss. 9. P. 1743–1753. https://doi.org/10.1016/j.jeurceramsoc.2008.10.019
  8. Atanassova E., Paskaleva A., Novkovski N. Effects of the metal gate on the stress-induced traps in Ta2O5 / SiO2 stacks // Microelectronics Reliability. 2008. V. 48. Iss. 2. P. 514–525. https://doi.org/10.1016/j.microrel.2013.10.008
  9. Vorobyov G.A., Mukhachev V.A. Breakdown of thin dielectric films. M.: Sov. Radio, 1977. 72 p.
  10. McCaughan D.V., Heiling J.A. Dielectric strength and interface-state behaviour of oxygen plasma-grown SiO2 films annealed at high temperature // Int. J. Electron. 1973. V. 34. Nо. 3. P. 737–740. https://doi.org/10.1080/00207217308938492
  11. Dell’Oca S., Pulfrey D., Jung L. Anodic oxide films. In the book. Physics of thin films. Current state of research and technical applications. T. 6 / Under general ed. M. X. Francomba, R. W. Hoffmann. Translation from English edited by V.B. Sandomirsky, M.: Mir, 1973. 392 p.
  12. Aleshina L.A. Study of anodic oxide films Nb2O5 and Ta2O5 by small-angle X-ray scattering // In collection “Anodic oxide films”. Petrozavodsk, 1978. Р. 30–35.
  13. Prokopchuk K.M. Some patterns of breakdown of anodic films in the metal—oxide—metal system. On Sat. “Anodic oxide films”. Petrozavodsk, 1978. Р. 150–157.
  14. Odynets L.L., Chekmasova S.S. Defects in anodic oxide films on tantalum. Electronic equipment. Ser. 5. Radio parts and radio components. 1976. V. 6 (19). P. 29.
  15. Bukatsello A.V., Vasiliev M.S., Kanabeeva M.G. Study of the defectiveness of niobium pentoxide films and its effect on the electrical properties of niobium thin-film capacitors // Izvestia LETI. 1976. Iss. 185. Р. 64.
  16. Sato A., Sato Sh., Okamoto E. Thin Film SiO2 Deposition by RF Sputtering onto the Anodic Ta2O5 Film // Shinku. 1975. V. 18. Nо. 7. С. 231–235.
  17. Sato Sh., Sato A., Okamoto E. An SiO2—Ta2O5 Thin Film Capacitor // IEEE Transactions on Parts, Hybrids, and Packaging. 1973. V. 9. Nо. 3. P. 161–166. https://ieeexplore.ieee.org/document/1136730
  18. Hanbya B., Stuarta B., Gimeno-Fabra M. et al. Layered Al2O3—SiO2 and Al2O3—Ta2O5 thin-film composites for high dielectric strength, deposited by pulsed direct current and radio frequency magnetron sputtering // Applied Surface Science. 2019. V. 492. P. 328–336. https://doi.org/10.1016/j.apsusc.2019.06.202
  19. Aleskovsky V.B. Chemical assembly of materials // Vestn. Academy of Sciences of the USSR. 1975. No. 6. Р. 48–52.
  20. Ezhovsky Yu.K., Mikhailovsky S.V. Molecular layering of oxide nanostructures on the surface of metal matrices // Microelectronics. 2022. T. 51. No. 2. Р. 110–117.
  21. Suntola T. Atomic Layer Epitaxy // Mater. Sci. Rep. 1989. V. 4. Iss. 5. Р. 261–312. https://doi.org/10.1016/S0920-2307(89)80006-4.
  22. Ahvenniemi E., Akbashev A.R., Ali S. et al. Review article: recommended reading list of early publications on atomic layer deposition — outcome of the “Virtual project on the history of ALD” // J. Vac. Sci. Technol. 2017. V. 35. Iss. 1. Р. 010801. 13 p. https://doi.org/10.1116/1.4971389
  23. Malygin A.A., Malkov A.A., Mikhailovsky S.V. et al. Optimization of the properties of inorganic catalytic membranes using nanotechnology of molecular layering // Russian Nanotechnologies. V. 5. No. 3–4. Р. 5–10.
  24. Yezhovsky Yu.K. Preparation of nanostructured films of silicon oxide and nitride using nanotechnology // Inorganic mater. 2013. T. 49. No. 9. P. 971–975.
  25. Yezhovsky Yu.K. Chemical assembly of surface nanostructures // Chem. Рhysics. 2005. T. 24. No. 4. P. 36–57.
  26. Handbook of electrical materials: 3 vols. T. 1 / Ed. Yu.V. Koritsky and others. 3rd ed., revised. M.: Energoatomizdat, 1986. 368 p.
  27. Knapas K., Rahtu A., Ritala M. Etching of Nb2O5 Thin Films by NbCl5 // Chemical Vapor Deposition. 2009. V. 15. Iss. 10–12. P. 269–273. https://doi.org/10.1002/cvde.200906795
  28. Elers K.-E., Ritala M., Leskeli M., Rauhala E. NbCl5 as a precursor in atomic layer epitaxy // Applied Surface Science. 1994. V. 82–83. P. 468–474. https://doi.org/10.1016/0169-4332(94)90260-7

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Variation of the specific capacitance of MDM-structures from the additive layer thickness d2 for (Nb2O5+SiO2) structures: 1-4 - experimental curves for the thicknesses of the main dielectric (Nb2O5) d1 = 100, 150, 200 and 250 nm, respectively; 1a-4a - calculated curves for the same thicknesses

Baixar (145KB)
3. Fig. 2. Effect of additive layer thickness d2 on the dielectric loss angle tangent: lines 1, 2 - (Ta2O5 + SiO2); 3, 4 - (Nb2O5 + SiO2); 1, 3 - d1 = 250 nm; 2, 4 - d1 = 100 nm

Baixar (76KB)
4. Fig. 3. Dependence of the breakdown field strength on the number of microbreakdowns in structures with single-layer (1, 3) and double-layer (2, 4) dielectric with thickness d2 = 4 nm: 1 - Nb2O5; 2 - (Nb2O5+SiO2); 3 - Ta2O5; 4 - (Ta2O5+SiO2)

Baixar (110KB)
5. Fig. 4. Dependence of electrical strength on anode dielectric thickness for Ta/Ta2O5/SiO2/Au (a) and Nb/Nb2O5/SiO2/Au (b) structures; curves: 1 - d2 = 0; 2 - d2 = 3 nm; 3 - d2 = 5 nm; 4 - d2 = 7.5 nm

Baixar (175KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies