Heat Shock Protein Inducer Suppresses Osteogenic Differentiation of Human Mesenchymal Stem Cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The key processes determining cell differentiation are the synthesis of new proteins and restructuring of the extracellular matrix. The production of matrix and cytosolic proteins, in turn, requires the constant involvement of the heat shock protein system — chaperones that ensure the proper folding of newly synthesized protein molecules and maintain their functional state. The aim of this study was to evaluate the effect of the heat shock protein inducer geranylgeranylacetone (GGA) on the differentiation of human mesenchymal stem cells. The study found that pretreating cells with GGA for 24 hours altered the pattern of calcium responses to the pro- osteogenic stimulus, parathyroid hormone. There was an increase in the number of cells responding to anti- osteogenic calcium oscillations associated with a decrease in the osteogenic potential of MSCs. Induction of osteogenic differentiation demonstrated a decrease in calcium deposition and RUNX2 and OSX gene expression. However, the addition of GGA had no significant effect on adipogenic differentiation. In search of a possible anti- osteogenic mechanism for the action of GGA, we analyzed the MSC proteomes treated with GGA or DMSO as controls. We found that incubation with GGA resulted in the absence of several proteins. Among these, calmodulin proteins (CALM1, CALM2, and CALM3), coactivators of adenylate cyclases, and proteins that regulate the actin cytoskeleton play a key role in osteogenesis. Thus, we demonstrated that the effect of GGA leads to a significant reduction in the capacity of MSCs for osteogenic, but not adipogenic, differentiation. A more detailed study of the mechanism of GGA action on embryonic and postnatal stem cells will further elucidate key features of the formation of new osteoblasts during embryogenesis and postnatal tissue renewal.

About the authors

V. A Usachev

Lomonosov Moscow State University

Email: usachjov-vova@mail.ru
ORCID iD: 0000-0003-1564-0644
Moscow, Russian Federation

M. V Shchebetina

Lomonosov Moscow State University

Email: mashaaasachcorg@gmail.com
ORCID iD: 0009-0006-1674-6247
Moscow, Russian Federation

K. Yu Smazhilo

Lomonosov Moscow State University

Email: k.smazhilo@yandex.ru
ORCID iD: 0009-0005-2349-4626
Moscow, Russian Federation

M. A Kulebyakina

Lomonosov Moscow State University

Email: m.a.kulebyakina@gmail.com
ORCID iD: 0000-0001-5956-1265
Moscow, Russian Federation

O. I Klychnikov

Lomonosov Moscow State University

Email: oklych@yahoo.co.uk
ORCID iD: 0000-0002-0383-9237
Moscow, Russian Federation

E. Bakhchinyan

Lomonosov Moscow State University

Email: is5492@mail.ru
ORCID iD: 0009-0000-9418-0396
Moscow, Russian Federation

N. S Voloshin

Lomonosov Moscow State University

Email: nik.voloshin.98@mail.ru
ORCID iD: 0009-0006-4209-3470
Moscow, Russian Federation

M. A Zamotina

Lomonosov Moscow State University

Email: zamotina.maria00@gmail.com
ORCID iD: 0000-0001-9994-6784
Moscow, Russian Federation

P. A Tyurin-Kuzmin

Lomonosov Moscow State University

Email: tyurinkuzminpa@my.msu.ru
ORCID iD: 0000-0002-1901-1637
Moscow, Russian Federation

M. V Vorontsova

Lomonosov Moscow State University

Email: maria.v.vorontsova@mail.ru
ORCID iD: 0000-0002-9124-294X
Moscow, Russian Federation

K. Yu Kulebyakin

Lomonosov Moscow State University

Email: konstantin-kuleb@mail.ru
ORCID iD: 0000-0001-6954-5787
Moscow, Russian Federation

References

  1. Eggerschwiler B., Canepa D.D., Pape H.C., Casanova E.A., Zoller S., Gvozdenovic A., et al. Automated digital image quantification of histological staining for the analysis of the trilineage differentiation potential of mesenchymal stem cells. Stem Cell Res Ther. 2019; 10(1): 69.
  2. Chen E., Xue D., Zhang W., Lin F., Pan Z. Extracellular heat shock protein 70 promotes osteogenesis of human mesenchymal stem cells through activation of the ERK signaling pathway. FEBS Lett. 2015; 589(24 Pt B): 4088–96.
  3. Cieza A., Causey K., Kamenov K., Hanson S.W., Chatterji S., Vos T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020; 396(10267): 2006–17.
  4. Ge S.X., Jung D., Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020; 36(8): 2628–9.
  5. Komori T., Yagi H., Nomura S., Yamaguchi A., Sasaki K., Deguchi K., et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997; 89(5): 755–64.
  6. Kulebyakin K., Tyurin-Kuzmin P., Sozaeva L., Grigorieva O., Groppa S., Dyikanov D., et al. Dynamic balance between pth1r-dependent signal cascades determines its pro-or anti-osteogenic effects on MSC. Cells. 2022; 11(21): 3519.
  7. Kulebyakina M., Basalova N., Butuzova D., Efimenko A., Skvortsov D., Kulebyakin A., et al. Balance between pro-and antifibrotic proteins in mesenchymal stromal cell secretome fractions revealed by proteome and cell subpopulation analysis. Int J Mol Sci. 2023; 25(1): 290.
  8. Li C., Sunderic K., Nicoll S.B., Wang S. Downregulation of heat shock protein 70 impairs osteogenic and chondrogenic differentiation in human mesenchymal stem cells. Sci Rep. 2018; 8(1): 553.
  9. Manokawinchoke J., Pavasant P., Sawangmake C., Limjeerajarus N., Limjeerajarus C., Sastravaha P., et al. Intermittent compressive force promotes osteogenic differentiation in human periodontal ligament cells by regulating the transforming growth factor-β pathway. Cell Death Dis. 2019; 10(10): 761.
  10. van Marion D.M.S., Hu X., Zhang D., Hoogstra-Berends F., Seerden J.P.G., Loen L., et al. Screening of novel HSP-inducing compounds to conserve cardiomyocyte function in experimental atrial fibrillation. Drug Des Devel Ther. 2019; 13: 345–64.
  11. van Marion D.M.S., Dorsch L., Hoogstra-Berends F., Kraneveld A.D., Vos M.J., de Groot N.M.S., et al. Oral geranylgeranylacetone treatment increases heat shock protein expression in human atrial tissue. Heart Rhythm. 2020; 17(1): 115–22.
  12. Nakazawa S., Tsuboi Y., Tsukamoto Y., Takeda H., Kato H., Nakagawa T., et al. Serum and stomach tissue levels of geranylgeranylacetone in patients. Int J Clin Pharmacol Ther Toxicol. 1983; 21(6): 267–70.
  13. Nimiritsky P., Novoseletskaya E., Eremichev R., Alexandrushkina N., Kulebyakina M., Basalova N., et al. Self-organization provides cell fate commitment in MSC sheet condensed areas via ROCK-dependent mechanism. Biomedicines. 2021; 9(9): 1192.
  14. Novoseletskaya E., Grigorieva O., Nimiritsky P., Basalova N., Efimenko A. Mesenchymal stromal cell-produced components of extracellular matrix potentiate multipotent stem cell response to differentiation stimuli. Front Cell Dev Biol. 2020; 8:555378.
  15. Olivares-Navarrete R., Lee E.M., Smith K., Hyzy S.L., Doroudi M., Williams J.K., et al. Substrate stiffness controls osteoblastic and chondrocytic differentiation of mesenchymal stem cells without exogenous stimuli. PLoS One. 2017; 12(1): e0170312.
  16. Solidum J.G.N., Jeong Y., Heralde F., Park W., Kim H., Lim K., et al. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol. 2023; 14: 1137063.
  17. Sugano E., Endo Y., Sugai A., Sasaoka M., Hirooka K., Shimizu H., et al. Geranylgeranyl acetone prevents glutamate-induced cell death in HT 22 cells by increasing mitochondrial membrane potential. Eur J Pharmacol. 2020; 883: 173193.
  18. Vorontsova M.V., Kulebyakin K.Y., Makazan N.V., Kulebyakina M.A., Grigorieva O.A., Rubtsova Y.P., et al. [Parathyroid hormone in the regulation of bone growth and resorption in health and disease]. Vestn Ross Akad Med Nauk. 2021; 76(5): 506–17. Russian.
  19. Wu J., Kaufman R.J. From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ. 2006; 13(3): 374–84.
  20. Ye J., Wang J., Zhao J., Chen Z., Pan H., Yuan W. RhoA/ROCK-TAZ Axis regulates bone formation within calvarial trans-sutural distraction osteogenesis. Cell Signal. 2024; 121: 111300.
  21. Yamaguchi D., Takeuchi K., Ueno A., Kamo Y., Kikuchi S., Takagi K., et al. Experimental Repositioning of Geranylgeranylacetone to Enhance Bone Remodeling. J Hard Tissue Biol. 2021; 30(1):–1–6.
  22. Zha J., Ying M., Alexander-Floyd J., Sokol A.M., Liton P.B., Sui S.H., et al. HSP 4/BiP expression in secretory cells is regulated by a developmental program and not by the unfolded protein response. PLoS Biol. 2019; 17(3): e3000196.
  23. Zhang W., Xue D., Yin H., Wang S., Li C., Chen E., et al. Overexpression of HSPA1A enhances the osteogenic differentiation of bone marrow mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway. Sci Rep. 2016; 6: 27622.
  24. Zhou Y., Cao S., Li H., Wang Y., Xu P., Yan P., et al. Heat Shock Protein 72 Antagonizes STAT3 Signaling to Inhibit Fibroblast Accumulation in Renal Fibrogenesis. Am J Pathol. 2016; 186(4): 816–28.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).