Cultivation and Cryopreservation of Induced Human Regulatory T-Cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study aimed to evaluate the long-term stability and cryopreservation resilience of human induced regulatory T-Cells (iTregs) in culture. Methods: CD4+ T-Cells were isolated from human peripheral blood mononuclear cells (PBMCs) using magnetic separation. iTreg differentiation was induced by culturing the cells in RPMI‑1640 medium supplemented with TGF-β, IL‑2, and anti-CD3 antibodies. The proportion of cells with a CD4+CD25+CD127low phenotype was assessed by flow cytometry at isolation and on days 7, 14, and 21 of culture, as well as post-cryopreservation. Furthermore, the expression of key Treg markers (CD4, IL2RA, FOXP3, IKZF2) was analyzed at the gene level via total RNA sequencing. Results: A significant increase in the CD4+CD25+CD127low population was observed following induction, reaching a high purity of 96.3±2.5% by day 7, which was maintained throughout the 21-day culture period. This phenotype remained stable after cryopreservation, with no significant loss in cell numbers. RNA sequencing confirmed stable transcriptional upregulation of canonical Treg markers, including FOXP3 and IL2RA. Conclusion: Human iTregs demonstrate remarkable phenotypic and transcriptional stability over 21 days in culture and maintain their defining characteristics following cryopreservation. This confirms their suitability for long-term studies and potential therapeutic applications.

About the authors

L. A Rzhanova

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: 9303923@gmail.com
ORCID iD: 0000-0003-4082-7662
Moscow, Russian Federation

E. V Kuzmenko

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: katya.3734@gmail.com
ORCID iD: 0009-0003-3601-1588
Moscow, Russian Federation; Dolgoprudny, Russian Federation

D. D Zhdanov

Institute of Biomedical Chemistry

Email: zhdanovdd@gmail.com
ORCID iD: 0000-0003-4753-7588
Moscow, Russian Federation

Z. R Starinnov

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: zakhar3600@gmail.com
ORCID iD: 0009-0001-0233-2231
Moscow, Russian Federation

M. A Machinskaya

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: maria.machinsky@gmail.com
ORCID iD: 0009-0006-3213-7564
Moscow, Russian Federation

A. S Ryabchenko

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: anfisafil@gmail.com
ORCID iD: 0000-0003-4998-1367
Moscow, Russian Federation

A. A Ryabinin

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: andrey951233@mail.ru
ORCID iD: 0000-0002-7337-1166
Moscow, Russian Federation

A. A Permyakova

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: dex.winner@gmail.com
ORCID iD: 0009-0009-1821-3454
Moscow, Russian Federation; Moscow, Russian Federation

O. L Cherkashina

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: olgalcher@gmail.com
ORCID iD: 0000-0002-6798-9365
Moscow, Russian Federation

E. A Vorotelyak

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: vorotelyak@yandex.ru
ORCID iD: 0000-0001-5405-0212
Moscow, Russian Federation

E. I Morgun

Koltzov Institute of Developmental Biology of the Russian Academy of Sciences

Email: lady.morgun2016@yandex.ru
ORCID iD: 0000-0002-9082-6206
Moscow, Russian Federation

References

  1. Blinova V.G., Sakhno L.V., Ponomarev E.D., Dukhanin A.S., Sharova N.I., Yarygin K.N. Phenotypical and functional characteristics of human regulatory T-cells during ex vivo maturation from CD4+ T-lymphocytes. Appl Sci (Basel). 2021; 11(13): 5776.
  2. Blinova V.G., Sakhno L.V., Ponomarev ED., Askarova S.A., Yarygin K.N. Increased suppressor activity of transformed ex vivo regulatory T-cells in comparison with unstimulated cells of the same donor. Biomed Khim. 2022; 68(1): 55–67.
  3. Blinova V.G., Zhdanov D.D. Many Faces of Regulatory T-Cells: Heterogeneity or Plasticity? Cells. 2024; 13(11): 959.
  4. Bluestone J.A., Buckner J.H., Fitch M., Gitelman S.E., Gupta S., Hellerstein M.K., et al. Type 1 diabetes immunotherapy using polyclonal regulatory T-cells. Sci Transl Med. 2015; 7(315): 315ra189.
  5. Chen W., Jin W., Hardegen N., Lei K.J., Li L., Marinos N., et al. Conversion of Peripheral CD4+CD25- Naive T-Cells to CD4+CD25+ Regulatory T-Cells by TGF-β Induction of Transcription Factor Foxp3. J Exp Med. 2003; 198(12): 1875–86.
  6. Deng G., Song X., Greene M.I. FoxP3 in Treg cell biology: a molecular and structural perspective. Clin Exp Immunol. 2020; 199(3): 255–62.
  7. Gołąb K., Grose R., Plociniczak M., Plewka K., Czerw A., Szyk A., et al. Cell banking for regulatory T cell-based therapy: strategies to overcome the impact of cryopreservation on the Treg viability and phenotype. Oncotarget. 2018; 9(11): 9728–40.
  8. Guo W., Wang P., Liu Z., Yang A. Regulatory T-cells in GVHD Therapy. Front Immunol. 2021; 12: 697854.
  9. Lam A.J., Lin D.T.S., Gillies J.K., Uday P., Pesenacker A.M., Kobor M.S., et al. Helios is a marker, not a driver, of human Treg stability. Eur J Immunol. 2022; 52(1): 75–84.
  10. Marson A., Kretschmer K., Frampton G.M., Jacobsen E.S., Polansky J.K., MacIsaac K.D., et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature. 2007; 445(7130): 931–5.
  11. Morgun E.I., Osipova I.K., Blinova V.G., Sakhno L.V., Ponomarev E.D. Mini-Review: Tregs as a Tool for Therapy- Obvious and Non-Obvious Challenges and Solutions. Cells. 2024; 13(20): 1680.
  12. Nayer B., Miao T., Wang Y., Wang X., Wang C., Wang X., et al. Local administration of regulatory T-cells promotes tissue healing. Nat Commun. 2024; 15(1): 7863.
  13. Riabinin A.A., Zhdanov D.D., Blinova V.G. Improvement of Treg Selectivity and Stability for Diabetes Mellitus Type 1 Treatment: Complex Approach for Perspective Technologies. Cells. 2025; 14(22): 1803.
  14. Sakaguchi S., Yamaguchi T., Nomura T., Ono M. Regulatory T-cells and Immune Tolerance. Cell. 2008; 133(5): 775–87.
  15. Takatori H., Kawashima H., Matsuki A., Meguro K., Tanaka S., Iwamoto T., et al. Helios Enhances Treg Cell Function in Cooperation With FoxP3. Arthritis Rheumatol. 2015; 67(6): 1491–502.
  16. Veldhoen M., Hocking R.J., Atkins C.J., Locksley R.M., Stockinger B. TGFβ in the Context of an Inflammatory Cytokine Milieu Supports De Novo Differentiation of IL 17-Producing T-cells. Immunity. 2006; 24(2): 179–89.
  17. Weingartner E., Golding A. Direct control of B-cells by Tregs: An opportunity for long-term modulation of the humoral response. Cell Immunol. 2017; 318: 8–16.
  18. Wu Y., Borde M., Heissmeyer V., Feuerer M., Lapan A.D., Stroud J.C., et al. FOXP3 Controls Regulatory T-Cell Function through Cooperation with NFAT. Cell. 2006; 126(2): 375–87.
  19. Yang H., Liu Y., He S., Zeng L., Xiao C., Liu Y., et al. Adoptive therapy with amyloid-β specific regulatory T-cells alleviates Alzheimer’s disease. Theranostics. 2022; 12(18): 7668–80.
  20. Yu W., Li D., Lu H., Feng Y., Che J. Coexpression of Helios in Foxp3+ Regulatory T-Cells and Its Role in Human Disease. Dis Markers. 2021; 2021: 5574472.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).