ОБРАТНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЙ ЭЛЕКТРОДИНАМИКИ С НЕЛИНЕЙНОЙ ЗАВИСИМОСТЬЮ СИЛЫ ТОКА ОТ ЭЛЕКТРИЧЕСКОГО НАПРЯЖЕНИЯ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается система уравнений Максвелла, в которой сила тока нелинейно зависит от электрического напряжения. В изучаемом случае она определяется четырьмя коэффициентами, зависящими от пространственных переменных. Эти коэффициенты предполагаются финитными, их носитель содержится внутри шара 𝐵(𝑅) радиуса 𝑅. Для системы уравнений электродинамики ставится задача о падении плоской бегущей волны с резким фронтом на неоднородность, локализованную внутри шара 𝐵(𝑅). Выводится формула для вычисления амплитуды фронта этой волны. Далее изучается обратная задача, заключающаяся в отыскании четырёх коэффициентов, определяющих силу тока по амплитуде фронта волны, задаваемой для различных направлений плоской волны, на части границы области 𝐵(𝑅). Показывается, что эта задача распадается на четыре отдельные задачи: одна из них приводится к обычной задаче рентгеновской томографии, три других — к идентичным друг другу задачам интегральной геометрии на семействе прямых линий. Эти задачи исследуются и находится оценка устойчивости их решений.

Об авторах

В. Г Романов

Институт математики имени С.Л. Соболева Сибирского отделения РАН

Email: romanov@math.nsc.ru
Новосибирск

Список литературы

  1. Kurylev, Y. Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations / Y. Kurylev, M. Lassas, G. Uhlmann // Invent. Math. — 2018. — V. 212. — P. 781—857.
  2. Lassas, M. Inverse problems for semilinear wave equations on Lorentzian manifolds / M. Lassas, G. Uhlmann, Y. Wang // Commun. Math. Phys. — 2018. — V. 360. — P. 555—609.
  3. Lassas, M. Inverse problems for linear and non-linear hyperbolic equations / M. Lassas // Proc. Intern. Congress Math. — 2018. — V. 3. — P. 3739—3760.
  4. Hintz, P. Reconstruction of Lorentzian manifolds from boundary light observation sets / P. Hintz, G. Uhlmann // Intern. Math. Res. Notices. — 2019. — V. 22. — P. 6949—6987.
  5. Hintz, P. An inverse boundary value problem for a semilinear wave equation on Lorentzian manifolds / P. Hintz, G. Uhlmann, J. Zhai // Intern. Math. Res. Notices. — 2022. — V. 17. — P. 3181–3211.
  6. Uniqueness, reconstruction and stability for an inverse problem of a semi-linear wave equation / M. Lassas, T. Liimatainen, L. Potenciano-Machado, T. Tyni // J. Differ. Equat. — 2022. — V. 337. — P. 395–435.
  7. Detection of Hermitian connections in wave equations with cubic non-linearity / X. Chen, M. Lassas, L. Oksanen, G. P. Paternain // J. Eur. Math. Soc. — 2022. — V. 24, № 7. — P. 2191–2232.
  8. Wang, Y. Inverse problems for quadratic derivative nonlinear wave equations / Y. Wang, T. Zhou // Commun. Partial Differ. Equat. — 2019. — V. 44, № 11. — P. 1140–1158.
  9. Barreto, A.S. Interactions of semilinear progressing waves in two or more space dimensions / A.S. Barreto // Inverse Probl. Imaging. — 2020. — V. 14, № 6. — P. 1057—1105.
  10. Uhlmann, G. On an inverse boundary value problem for a nonlinear elastic wave equation / G. Uhlmann, J. Zhai // J. Math. Pures Appl. — 2021. — V. 153. — P. 114–136.
  11. Barreto, A.S. Recovery of a cubic non-linearity in the wave equation in the weakly Nonlinear regime / A.S. Barreto, P. Stefanov // Commun. Math. Phys. — 2022. — V. 392. — P. 25–53.
  12. Романов, В.Г. Обратная задача для полулинейного волнового уравнения / В.Г. Романов // Докл. РАН. Математика, информатика, процессы управления. — 2022. — Т. 504, № 1. — С. 36–41.
  13. Романов, В.Г. Обратная задача для волнового уравнения с нелинейным поглощением / В.Г. Романов // Сиб. мат. журн. — 2023. — Т. 64, № 3. — С. 635–652.
  14. Романов, В.Г. Оценка устойчивости в обратной задаче для нелинейного гиперболического уравнения / В.Г. Романов // Сиб. мат. журн. — 2024. — Т. 65, № 3. — С. 560–576.
  15. Романов, В.Г. Обратная задача для волнового уравнения с двумя нелинейными членами / В.Г. Романов // Дифференц. уравнения. — 2024. — Т. 60, № 4. — С. 508–520.
  16. Romanov, V.G. An inverse problem for a nonlinear hyperbolic equation / V.G. Romanov, T.V. Bugueva // Eurasian J. Math. Comp. Appl. — 2024. — V. 12, № 2. — P. 134–154.
  17. Romanov, V.G. An one-dimensional inverse problem for the wave equation / V.G. Romanov, T.V. Bugueva // Eurasian J. Math. Comp. Appl. — 2024. — V. 12, № 3. — P. 135–162.
  18. Мухометов, Р.Г. Задача восстановления двумерной римановой метрики и интегральная геометрия / Р.Г. Мухометов // Докл. АН СССР. — 1977. — Т. 232, № 1. — С. 32–35.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).