Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 61, No 5 (2025)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

ЛЮДИ НАУКИ

EVGENIY ALEKSANDROVICh BARABANOV (11.11.1958–03.04.2025)

- -.
Differencial'nye uravneniya. 2025;61(5):579–580
pages 579–580 views

ORDINARY DIFFERENTIAL EQUATIONS

SOME VARIATIONAL PRINCIPLES FOR SELF-ADJOINT HAMILTONIAN SYSTEMS

Vladimirov A.A., Karulina E.S.

Abstract

In the paper a problem on the connection of the self-adjoint Hamiltonian systems theory with the operators in Banach spaces triplets, and on achievement of the estimates of negative eigenvalues of self-adjoint Hamiltonian systems using this connection is considered.
Differencial'nye uravneniya. 2025;61(5):581–595
pages 581–595 views

ON VARIOUS RADIAL PROPERTIES OF A DIFFERENTIAL SYSTEM

Sergeev I.N.

Abstract

Various qualitative properties of a differential system related to the behavior of its solutions starting near zero are considered: stability and asymptotic stability, complete oscillation, wandering, and rotation, as well as complete negations of each of these properties. Logical connections of their various radial and general radial varieties are studied both with each other and with the corresponding complete properties, as well as with the measures of these properties.
Differencial'nye uravneniya. 2025;61(5):596–605
pages 596–605 views

PARTIAL DERIVATIVE EQUATIONS

MODEL FIRST BOUNDARY VALUE PROBLEM FOR PARABOLIC SYSTEM IN ZYGMUND SPACES

Egorova A.Y., Konenkov A.N.

Abstract

The first boundary value problem for the Petrovsky uniformly parabolic system of the second order with one spatial variable is considered. The coefficients of the system are assumed to be constant, and the domain is a half-strip.The solvability of the problem in the scale of anisotropic Zygmund spaces is established.
Differencial'nye uravneniya. 2025;61(5):606–617
pages 606–617 views

CLASSICAL SOLUTION OF THE FIRST MIXED PROBLEM FOR THE WAVE EQUATION IN CYLINDRICAL DOMAIN IN ODD DIMENSIONAL SPACE

Korzyuk V.I., Stolyarchuk I.I.

Abstract

The classical solution of the first mixed problem for the wave equation in the cylindrical area in the space with odd number of dimensions is considered. The solution is constructed using the spherical averages operators which allows the reduction of the equation to the first mixed problem for the one-dimensional wave equation. Using the characteristics method the explicit solution is obtained and necessary and sufficient matching conditions for the existance of the unique classical solution are proved.
Differencial'nye uravneniya. 2025;61(5):618–627
pages 618–627 views

AN INVERSE PROBLEM FOR ELECTRODYNAMIC EQUATIONS WITH A NONLINEAR CURRENT DEPENDENCE OF A TENSION

Romanov V.G.

Abstract

The system of Maxwell equations in which a current depends nonlinearly of the electrical tension is considered. In the studying case, it is determined of 4 coefficients depended of space variables. These coefficients are supposed to be finite functions with a support located within ball 𝐵(𝑅) of radius 𝑅. For electrodynamic equations a problem of falling down of a plane running wave with a strong front on the inhomogeneity localized in ball 𝐵(𝑅) is posed. A formula for calculation of an amplitude of this wave is derived. In the sequel, an inverse problem of finding 4 coefficients whose determine the current is considered. For this goal the amplitudes formula for different directions of falling waves is used for points at a part of the boundary of 𝐵(𝑅). It is demonstrated that this inverse problem is decomposed at 4 separated problems. One of them is the usual X-ray tomography problem, when the remain 3 others problems are identical problems of the integral geometry for a family of strait lines. In the latter problems, integrals of an unknown function is given along strait lines with a weight function which depends on the finding coefficients after solving the tomography problem. Arising problems of the integral geometry is studied and stability estimate of its solutions is found.
Differencial'nye uravneniya. 2025;61(5):628–639
pages 628–639 views

INTEGRAL EQUATIONS

MATHEMATICAL MODELING OF SCALE-STRUCTURAL FAILURE AT PROGRAM CYCLIC LOADING OF METALS AND ALLOYS

Zavoychinskaya E.B., Rautian N.A., Lavrikov G.E.

Abstract

Relations for the failure probability at the micro-, meso-, and macrolevels and fatigue curves on defect levels at the program loading are proposed. The results of calculations for 0,25 % carbon steel at the loading of two or three blocks with different amplitudes and cycle numbers, steel 45 with different distributions of stress amplitudes and titanium alloy TC21 at symmetric loading, each block of which consists of two amplitudes of different numbers of cycles are discussed. For the materials considered, the model describes the evolution of brittle failure and the fatigue curve on fracture at symmetrical loading well. The scope of applicability of the model for program loadings is determined. It well describes the fatigue curve on fracture in a range of 𝑁𝑓 ⩾ 106 number of cycles and program loadings, in which the maximum stress values on average do not exceed the endurance by more than 30 %.
Differencial'nye uravneniya. 2025;61(5):640–658
pages 640–658 views

CONTROL THEORY

MAXIMUM PRINCIPLE IN THE LINEAR MINIMUM-TIME CONTROL PROBLEM

Arutyunov A.V., Balashov M.V.

Abstract

In a minimum-time control problem, both with an autonomous and with a non-autonomous system, the question of the sufficient conditions for the maximum principle is solved. The question of the uniqueness of optimal control is also considered. New conditions are obtained that guarantee the sufficiency of the maximum principle in terms of the geometry of the reachability set and the geometry of the control set. Examples that demonstrate the non-improvability of the obtained results are considered.
Differencial'nye uravneniya. 2025;61(5):659–674
pages 659–674 views

A SUFFICIENT CONDITION FOR THE CONSISTENCY OF A PIECEWISE LINEAR APPROXIMATION OF A NOLINEAR AFFINE SYSTEM

Fursov A.S., Krylov P.A.

Abstract

For a controlled nonlinear affine system, a piecewise linear approximation in the form of a switched affine system is considered. The concept of consistency of a piecewise linear approximation is introduced when the system is closed by a variable structure controller. The consistency of the approximation ensures the equality of the graphs of discrete states of the nonlinear system itself and its piecewise linear approximation. A sufficient condition for the consistency of the approximation is obtained and an approach to numerical verification of its fulfillment is proposed.
Differencial'nye uravneniya. 2025;61(5):675–684
pages 675–684 views

NUMERICAL METHODS

NUMERICAL SOLUTION OF INTEGRAL EQUATIONS OF THE THIRD KIND WITH FIXED SINGULARITIES OF THE KERNEL

Gabbasov N.S., Galimova Z.K.

Abstract

A linear integral equation of the third kind with fixed singularities in the kernel is studied. For its approximate solution in the space of generalized functions, a special generalized spline method is proposed and substantiated. Optimality of the method in order of accuracy is proved.
Differencial'nye uravneniya. 2025;61(5):685–696
pages 685–696 views

A POSTERIORI IDENTITIES FOR THE GENERALISED STOKES PROBLEM

Repin S.I.

Abstract

In the paper, functional identities for the difference between a given function and exact solution of the generalized Stokes problem are derived. The restrictions on the form of such a function are minimal. Actually, they are reduced to the requirement that it must belong to the same functional class as the solution of the problem. The left part of the identity represents a weighted sum of norms and characterizes deviations from the exact velocity and stresses fields. The right part includes a number of summands. Some of them can be directly computed from the problem data and known approximate solutions. Other terms contain unknown functions but can be efficiently estimated. Hence the identity is a basis for getting fully computable two-sided bounds of the distance to the solution of the problem. The identities and the estimates derived from them can be used to estimate errors of approximations generated by various numerical methods. They are true both for solenoidal approximations, as well as for those that satisfy the incompressibility condition only with a certain degree of accuracy. In addition, identities and estimates make it possible to compare exact solutions to problems with different data. Therefore, they open a way to evaluate errors of mathematical models, e.g., those that arise after changing (simplification) of the differential equation or due to replacing the incompressibility condition by weaker conditions.
Differencial'nye uravneniya. 2025;61(5):697–720
pages 697–720 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».