AN INVERSE PROBLEM FOR ELECTRODYNAMIC EQUATIONS WITH A NONLINEAR CURRENT DEPENDENCE OF A TENSION
- Authors: Romanov V.G1
-
Affiliations:
- Sobolev Institute of Mathematics of Siberian Branch of RAS
- Issue: Vol 61, No 5 (2025)
- Pages: 628–639
- Section: PARTIAL DERIVATIVE EQUATIONS
- URL: https://journals.rcsi.science/0374-0641/article/view/299162
- DOI: https://doi.org/10.31857/S0374064125050056
- EDN: https://elibrary.ru/HAUVPB
- ID: 299162
Cite item
Abstract
About the authors
V. G Romanov
Sobolev Institute of Mathematics of Siberian Branch of RAS
Email: romanov@math.nsc.ru
Novosibirsk, Russia
References
- Kurylev, Y. Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations / Y. Kurylev, M. Lassas, G. Uhlmann // Invent. Math. — 2018. — V. 212. — P. 781—857.
- Lassas, M. Inverse problems for semilinear wave equations on Lorentzian manifolds / M. Lassas, G. Uhlmann, Y. Wang // Commun. Math. Phys. — 2018. — V. 360. — P. 555—609.
- Lassas, M. Inverse problems for linear and non-linear hyperbolic equations / M. Lassas // Proc. Intern. Congress Math. — 2018. — V. 3. — P. 3739—3760.
- Hintz, P. Reconstruction of Lorentzian manifolds from boundary light observation sets / P. Hintz, G. Uhlmann // Intern. Math. Res. Notices. — 2019. — V. 22. — P. 6949—6987.
- Hintz, P. An inverse boundary value problem for a semilinear wave equation on Lorentzian manifolds / P. Hintz, G. Uhlmann, J. Zhai // Intern. Math. Res. Notices. — 2022. — V. 17. — P. 3181–3211.
- Uniqueness, reconstruction and stability for an inverse problem of a semi-linear wave equation / M. Lassas, T. Liimatainen, L. Potenciano-Machado, T. Tyni // J. Differ. Equat. — 2022. — V. 337. — P. 395–435.
- Detection of Hermitian connections in wave equations with cubic non-linearity / X. Chen, M. Lassas, L. Oksanen, G. P. Paternain // J. Eur. Math. Soc. — 2022. — V. 24, № 7. — P. 2191–2232.
- Wang, Y. Inverse problems for quadratic derivative nonlinear wave equations / Y. Wang, T. Zhou // Commun. Partial Differ. Equat. — 2019. — V. 44, № 11. — P. 1140–1158.
- Barreto, A.S. Interactions of semilinear progressing waves in two or more space dimensions / A.S. Barreto // Inverse Probl. Imaging. — 2020. — V. 14, № 6. — P. 1057—1105.
- Uhlmann, G. On an inverse boundary value problem for a nonlinear elastic wave equation / G. Uhlmann, J. Zhai // J. Math. Pures Appl. — 2021. — V. 153. — P. 114–136.
- Barreto, A.S. Recovery of a cubic non-linearity in the wave equation in the weakly Nonlinear regime / A.S. Barreto, P. Stefanov // Commun. Math. Phys. — 2022. — V. 392. — P. 25–53.
- Романов, В.Г. Обратная задача для полулинейного волнового уравнения / В.Г. Романов // Докл. РАН. Математика, информатика, процессы управления. — 2022. — Т. 504, № 1. — С. 36–41.
- Романов, В.Г. Обратная задача для волнового уравнения с нелинейным поглощением / В.Г. Романов // Сиб. мат. журн. — 2023. — Т. 64, № 3. — С. 635–652.
- Романов, В.Г. Оценка устойчивости в обратной задаче для нелинейного гиперболического уравнения / В.Г. Романов // Сиб. мат. журн. — 2024. — Т. 65, № 3. — С. 560–576.
- Романов, В.Г. Обратная задача для волнового уравнения с двумя нелинейными членами / В.Г. Романов // Дифференц. уравнения. — 2024. — Т. 60, № 4. — С. 508–520.
- Romanov, V.G. An inverse problem for a nonlinear hyperbolic equation / V.G. Romanov, T.V. Bugueva // Eurasian J. Math. Comp. Appl. — 2024. — V. 12, № 2. — P. 134–154.
- Romanov, V.G. An one-dimensional inverse problem for the wave equation / V.G. Romanov, T.V. Bugueva // Eurasian J. Math. Comp. Appl. — 2024. — V. 12, № 3. — P. 135–162.
- Мухометов, Р.Г. Задача восстановления двумерной римановой метрики и интегральная геометрия / Р.Г. Мухометов // Докл. АН СССР. — 1977. — Т. 232, № 1. — С. 32–35.
Supplementary files
