On a certain family of algebraic number fields with finite 3-class field tower

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Пусть $\ell=3$, $k=\mathbb Q(\sqrt{-3})$ и $K=k(\sqrt[3]{a})$, где $a$ – натуральное число такое, что $a^2\equiv 1\pmod 9$. В предположении, что в расширении $K_\infty/k_\infty$, где $k_\infty$ и $K_\infty$ – круговые $\mathbb Z_3$-расширения полей $k$ и $K$ соответственно, разветвлены ровно три простые точки, не лежащие над $\ell$, мы изучаем 3-башни полей классов промежуточных полей $K_n$ расширения $K_\infty/K$.Доказано,что для любого $K_n$ 3-башня полей классов поля $K_n$обрывается на первом же шаге, т.е. группа Галуа расширения $\mathbf H_\ell(K_n)/K_n$, где $\mathbf H_\ell(K_n)$ – максимальное неразветвленное $\ell$-расшире-ние поля $K_n$, абелева.Библиография: 7 названий.

Sobre autores

Leonid Kuz'min

National Research Centre "Kurchatov Institute"

Email: helltiapa@mail.ru
Doctor of physico-mathematical sciences

Bibliografia

  1. Л. В. Кузьмин, “Арифметика некоторых $ell$-расширений с тремя точками ветвления”, Алгебра, теория чисел и алгебраическая геометрия, Сборник статей. Посвящается памяти академика Игоря Ростиславовича Шафаревича, Труды МИАН, 307, МИАН, М., 2019, 78–99
  2. Л. В. Кузьмин, “Арифметика некоторых $ell$-расширений с тремя точками ветвления. II”, Изв. РАН. Сер. матем., 85:5 (2021), 132–151
  3. Л. В. Кузьмин, “Арифметика некоторых $ell$-расширений с тремя точками ветвления. III”, Изв. РАН. Сер. матем., 86:6 (2022), 123–142
  4. Л. В. Кузьмин, “Арифметика некоторых $ell$-расширений с тремя точками ветвления. IV”, Изв. РАН. Сер. матем., 88:2 (2024), 80–95
  5. Л. В. Кузьмин, “Аналог формулы Римана–Гурвица для одного типа $l$-расширений полей алгебраических чисел”, Изв. АН СССР. Сер. матем., 54:2 (1990), 316–338
  6. Л. В. Кузьмин, “Новые явные формулы для символа норменного вычета и их приложения”, Изв. АН СССР. Сер. матем., 54:6 (1990), 1196–1228
  7. Л. В. Кузьмин, “Модуль Тэйта полей алгебраических чисел”, Изв. АН СССР. Сер. матем., 36:2 (1972), 267–327

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Кузьмин Л.V., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).