Logical complexity of induced subgraph isomorphism for certain families of graphs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We investigate the problem of the most efficient first-order definition of the property of containing an induced subgraph isomorphic to a given pattern graph, which is closely related to the time complexity of the decision problem for this property.We derive a series of new bounds for the minimum quantifier depth of a formula defining this property for pattern graphs on five vertices, as well as for disjoint unions of isomorphic complete multipartite graphs. Moreover, we prove that for any $\ell\geq 4$ there exists a graph on $\ell$ vertices and a first-order formula of quantifier depth at most $\ell-1$ that defines the property of containing an induced subgraph isomorphic to this graph.Bibliography: 12 titles.

About the authors

Maksim Evgen'evich Zhukovskii

Advanced Combinatorics and Networking Lab, Moscow Institute of Physics and Technology (National Research University); Moscow Center for Fundamental and Applied Mathematics

Email: zhukmax@gmail.com
Doctor of physico-mathematical sciences

Eremei Denisovich Kudryavtsev

Moscow Institute of Physics and Technology (National Research University)

Email: keremey57@gmail.com

Mikhail Vladimirovich Makarov

Moscow Institute of Physics and Technology (National Research University)

Email: vbif-98@mail.ru

Aleksandra Sergeevna Shlychkova

Moscow Institute of Physics and Technology (National Research University)

Email: aleksandrashlychkova@gmail.com

References

  1. Н. К. Верещагин, А. Шень, Языки и исчисления, Лекции по математической логике и теории алгоритмов, 2, 4-е изд., испр., МЦНМО, М., 2012, 240 с.
  2. М. Е. Жуковский, А. М. Райгородский, “Случайные графы: модели и предельные характеристики”, УМН, 70:1(421) (2015), 35–88
  3. L. Libkin, Elements of finite model theory, Texts Theoret. Comput. Sci. EATCS Ser., Springer-Verlag, Berlin, 2004, xiv+315 pp.
  4. Jianer Chen, Xiuzhen Huang, I. A. Kanj, Ge Xia, “Strong computational lower bounds via parameterized complexity”, J. Comput. System Sci., 72:8 (2006), 1346–1367
  5. J. Nešetřil, S. Poljak, “On the complexity of the subgraph problem”, Comment. Math. Univ. Carolin., 26:2 (1985), 415–419
  6. F. Eisenbrand, F. Grandoni, “On the complexity of fixed parameter clique and dominating set”, Theoret. Comput. Sci., 326:1-3 (2004), 57–67
  7. F. Le Gall, “Powers of tensors and fast matrix multiplication”, Proceedings of the 39th international symposium on symbolic and algebraic computation (ISSAC {'}14), ACM, New York, 2014, 296–303
  8. O. Verbitsky, M. Zhukovskii, “On the first-order complexity of induced subgraph isomorphism”, Computer science logic, LIPIcs. Leibniz Int. Proc. Inform., 82, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017, 40, 16 pp.
  9. S. Janson, T. Łuczak, A. Rucinski, Random graphs, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley-Interscience [John Wiley & Sons], New York, 2000, xii+333 pp.
  10. O. Verbitsky, M. Zhukovskii, “The descriptive complexity of subgraph isomorphism without numerics”, Theory Comput. Syst., 63:4 (2019), 902–921
  11. М. Е. Жуковский, “Запись свойства существования изоморфного подграфа на языке первого порядка”, Докл. РАН, 476:3 (2017), 256–259
  12. A. Ehrenfeucht, “An application of games to the completeness problem for formalized theories”, Fund. Math., 49 (1960/1961), 129–141

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Zhukovskii M.E., Kudryavtsev E.D., Makarov M.V., Shlychkova A.S.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).