Логическая сложность свойства наличия индуцированного подграфа, изоморфного данному, для некоторых семейств графов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В настоящей работе изучается задача наиболее эффективной записи на языке первого порядка свойства наличия индуцированного подграфа, изоморфного заданному pattern-графу, тесно связанная с оцениванием временной сложности проверки такого свойства. Мы получили ряд новых оценок наименьшей кванторной глубины формулы, определяющей упомянутое свойство для pattern-графов на пяти вершинах, а также для дизъюнктных объединений изоморфных полных многодольных графов. Кроме того, мы доказали, что для любого $\ell\geq 4$ найдется граф на $\ell$ вершинах и формула первого порядка кванторной глубины не более $\ell-1$, записывающая свойство содержать индуцированный подграф, изоморфный этому графу.Библиография: 12 названий.

Об авторах

Максим Евгеньевич Жуковский

Лаборатория продвинутой комбинаторики и сетевых приложений, Московский физико-технический институт (национальный исследовательский университет); Московский центр фундаментальной и прикладной математики

Email: zhukmax@gmail.com
доктор физико-математических наук

Еремей Денисович Кудрявцев

Московский физико-технический институт (национальный исследовательский университет)

Email: keremey57@gmail.com

Михаил Владимирович Макаров

Московский физико-технический институт (национальный исследовательский университет)

Email: vbif-98@mail.ru

Александра Сергеевна Шлычкова

Московский физико-технический институт (национальный исследовательский университет)

Email: aleksandrashlychkova@gmail.com

Список литературы

  1. Н. К. Верещагин, А. Шень, Языки и исчисления, Лекции по математической логике и теории алгоритмов, 2, 4-е изд., испр., МЦНМО, М., 2012, 240 с.
  2. М. Е. Жуковский, А. М. Райгородский, “Случайные графы: модели и предельные характеристики”, УМН, 70:1(421) (2015), 35–88
  3. L. Libkin, Elements of finite model theory, Texts Theoret. Comput. Sci. EATCS Ser., Springer-Verlag, Berlin, 2004, xiv+315 pp.
  4. Jianer Chen, Xiuzhen Huang, I. A. Kanj, Ge Xia, “Strong computational lower bounds via parameterized complexity”, J. Comput. System Sci., 72:8 (2006), 1346–1367
  5. J. Nešetřil, S. Poljak, “On the complexity of the subgraph problem”, Comment. Math. Univ. Carolin., 26:2 (1985), 415–419
  6. F. Eisenbrand, F. Grandoni, “On the complexity of fixed parameter clique and dominating set”, Theoret. Comput. Sci., 326:1-3 (2004), 57–67
  7. F. Le Gall, “Powers of tensors and fast matrix multiplication”, Proceedings of the 39th international symposium on symbolic and algebraic computation (ISSAC {'}14), ACM, New York, 2014, 296–303
  8. O. Verbitsky, M. Zhukovskii, “On the first-order complexity of induced subgraph isomorphism”, Computer science logic, LIPIcs. Leibniz Int. Proc. Inform., 82, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017, 40, 16 pp.
  9. S. Janson, T. Łuczak, A. Rucinski, Random graphs, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley-Interscience [John Wiley & Sons], New York, 2000, xii+333 pp.
  10. O. Verbitsky, M. Zhukovskii, “The descriptive complexity of subgraph isomorphism without numerics”, Theory Comput. Syst., 63:4 (2019), 902–921
  11. М. Е. Жуковский, “Запись свойства существования изоморфного подграфа на языке первого порядка”, Докл. РАН, 476:3 (2017), 256–259
  12. A. Ehrenfeucht, “An application of games to the completeness problem for formalized theories”, Fund. Math., 49 (1960/1961), 129–141

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Жуковский М.Е., Кудрявцев Е.Д., Макаров М.В., Шлычкова А.С., 2021

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).