Calculating Electron Swarm Parameters in Neon in Strong Electric Fields

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Dependences of the kinetic and transport coefficients of electrons in neon are calculated by the Monte Carlo method in the range of reduced field strengths E/N from 15 to 1500 Td. The calculated dependences are compared with the results obtained by solving the kinetic equation in the Lorentz approximation. It is shown that this approximation is violated in strong electric fields, which leads to noticeable differences in the values of the transport coefficients calculated using both methods. To verify the calculations, a comparison was made with the measurement data available in the literature. It is also shown that the diffusion-drift approximation poorly describes the spatiotemporal evolution of the electron number density in neon in fields greater than ≈500 Td.

About the authors

E. I. Bochkov

All-Russia Research Institute of Experimental Physics, Russian Federal Nuclear Center

Author for correspondence.
Email: e_i_bochkov@mail.ru
607188, Sarov, Nizhni Novgorod oblast, Russia

References

  1. Голант В.Е., Жилинский А.П., Сахаров И.Е. Основы физики плазмы. М.: Атомиздат, 1977.
  2. Sakai Y., Tagashira H., Sakamoto S. // J. Phys. D.: A-ppl. Phys. 1997. V. 10. P. 1035.
  3. Бочков Е.И., Бабич Л.П. // Физика плазмы. 2022. Т. 48. № 3. С. 276.
  4. Alves L.L., Bartschat K., Biagi S.F., Bordage M.C., Pitchford L.C., Ferreira C.M., Hagelaar G.J.M., Mor-gan W.L., Pancheshnyi S., Phelps A.V., Puech V., Zatsa-rinny O. // J. Phys. D.: Appl. Phys. 2013. V. 46. 334002 (22 pp).
  5. Hagelaar G.J.M., Pitchford L.C. // Plasma Sources Sci. Technol. 2005. V. 14. P. 722.
  6. Allis W.P. // Physical Review A. 1982. V. 26 (3). P. 1704.
  7. Бочков Е.И., Бабич Л.П., Куцык И.М. // Физика плазмы. 2021. Т. 47. № 10. С. 935.
  8. Adibzadeh M., Theodosiou C.E. // Atomic Data and Nuclear Data Tables. 2005. V. 91. P. 8.
  9. Salvat F., Jablonski A., Powell C.J. // Computer Phys. Communications. 2005. V. 165. P. 157.
  10. Wetzel R.C., Baiocchi F.A., Hayes T.R., Freund R.S. // Phys. Rev. A. 1987. V. 35(2). P. 559.
  11. De Heer F.J., Jansen R.H., van der Kaay W. // J. Phys. B: Molec. Phys. 1979. V. 12(6). P. 979.
  12. Schram B.L., de Heer F.J., van der Wiel M.J., Kistema-ker J. // Physica. 1965. V. 31. P. 94.
  13. www.lxcat.net/Biagi-v7.1
  14. Raju G.G. Gaseous Electronics. Tables, Atoms, and Molecules. N.Y.: CRC Press, 2012.
  15. Kim Y.-K., Rudd M.E. // Phys. Rev. A. 1994. V. 505. P. 3954.
  16. Yates B.R., Keane K., Khakoo M.A. // J. Phys. B: At. Mol. Opt. Phys. 2009. V. 42. 095206.
  17. Tahira S., Oda N. // J. Phys. Soc. Japan. 1973. V. 35(2). P. 582.
  18. Petrovic Z.L., Dujko S., Maric D., Malovic G., Nikito-vic Z., Sasic O., Jovanovic J., Stojanovic V., Radmilovic-Radenovic M. // J. Phys. D.: Appl. Phys. 2009. V. 42. 194002.
  19. Kucukarpaci H.N., Saelee H.T., Lucas J. // J. Phys. D.: Appl. Phys. 1981. V. 14. P. 9.
  20. Al-Amin S.A.J., Lucas J. // J. Phys. D: Appl. Phys. 1987. V. 20. P. 1590.
  21. Chanin M.L., Rork G.D. // Phys. Rev. 1963. V. 132(6). P. 2547.
  22. Kruithof A.A., Penning F.M. // Physica. 1937. V. 32. P. 430.
  23. Willis B.A., Morgan C.G. // Brit. J. Appl. Phys. 1968. V. 1. P. 1219.
  24. Dutton J., Hughes M.H., Tan B. // J. Phys. B. 1969. V. 2. P. 890.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (145KB)
3.

Download (267KB)
4.

Download (392KB)
5.

Download (264KB)
6.

Download (80KB)
7.

Download (95KB)

Copyright (c) 2023 Е.И. Бочков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies