Calculating Electron Swarm Parameters in Neon in Strong Electric Fields

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Dependences of the kinetic and transport coefficients of electrons in neon are calculated by the Monte Carlo method in the range of reduced field strengths E/N from 15 to 1500 Td. The calculated dependences are compared with the results obtained by solving the kinetic equation in the Lorentz approximation. It is shown that this approximation is violated in strong electric fields, which leads to noticeable differences in the values of the transport coefficients calculated using both methods. To verify the calculations, a comparison was made with the measurement data available in the literature. It is also shown that the diffusion-drift approximation poorly describes the spatiotemporal evolution of the electron number density in neon in fields greater than ≈500 Td.

Sobre autores

E. Bochkov

All-Russia Research Institute of Experimental Physics, Russian Federal Nuclear Center

Autor responsável pela correspondência
Email: e_i_bochkov@mail.ru
607188, Sarov, Nizhni Novgorod oblast, Russia

Bibliografia

  1. Голант В.Е., Жилинский А.П., Сахаров И.Е. Основы физики плазмы. М.: Атомиздат, 1977.
  2. Sakai Y., Tagashira H., Sakamoto S. // J. Phys. D.: A-ppl. Phys. 1997. V. 10. P. 1035.
  3. Бочков Е.И., Бабич Л.П. // Физика плазмы. 2022. Т. 48. № 3. С. 276.
  4. Alves L.L., Bartschat K., Biagi S.F., Bordage M.C., Pitchford L.C., Ferreira C.M., Hagelaar G.J.M., Mor-gan W.L., Pancheshnyi S., Phelps A.V., Puech V., Zatsa-rinny O. // J. Phys. D.: Appl. Phys. 2013. V. 46. 334002 (22 pp).
  5. Hagelaar G.J.M., Pitchford L.C. // Plasma Sources Sci. Technol. 2005. V. 14. P. 722.
  6. Allis W.P. // Physical Review A. 1982. V. 26 (3). P. 1704.
  7. Бочков Е.И., Бабич Л.П., Куцык И.М. // Физика плазмы. 2021. Т. 47. № 10. С. 935.
  8. Adibzadeh M., Theodosiou C.E. // Atomic Data and Nuclear Data Tables. 2005. V. 91. P. 8.
  9. Salvat F., Jablonski A., Powell C.J. // Computer Phys. Communications. 2005. V. 165. P. 157.
  10. Wetzel R.C., Baiocchi F.A., Hayes T.R., Freund R.S. // Phys. Rev. A. 1987. V. 35(2). P. 559.
  11. De Heer F.J., Jansen R.H., van der Kaay W. // J. Phys. B: Molec. Phys. 1979. V. 12(6). P. 979.
  12. Schram B.L., de Heer F.J., van der Wiel M.J., Kistema-ker J. // Physica. 1965. V. 31. P. 94.
  13. www.lxcat.net/Biagi-v7.1
  14. Raju G.G. Gaseous Electronics. Tables, Atoms, and Molecules. N.Y.: CRC Press, 2012.
  15. Kim Y.-K., Rudd M.E. // Phys. Rev. A. 1994. V. 505. P. 3954.
  16. Yates B.R., Keane K., Khakoo M.A. // J. Phys. B: At. Mol. Opt. Phys. 2009. V. 42. 095206.
  17. Tahira S., Oda N. // J. Phys. Soc. Japan. 1973. V. 35(2). P. 582.
  18. Petrovic Z.L., Dujko S., Maric D., Malovic G., Nikito-vic Z., Sasic O., Jovanovic J., Stojanovic V., Radmilovic-Radenovic M. // J. Phys. D.: Appl. Phys. 2009. V. 42. 194002.
  19. Kucukarpaci H.N., Saelee H.T., Lucas J. // J. Phys. D.: Appl. Phys. 1981. V. 14. P. 9.
  20. Al-Amin S.A.J., Lucas J. // J. Phys. D: Appl. Phys. 1987. V. 20. P. 1590.
  21. Chanin M.L., Rork G.D. // Phys. Rev. 1963. V. 132(6). P. 2547.
  22. Kruithof A.A., Penning F.M. // Physica. 1937. V. 32. P. 430.
  23. Willis B.A., Morgan C.G. // Brit. J. Appl. Phys. 1968. V. 1. P. 1219.
  24. Dutton J., Hughes M.H., Tan B. // J. Phys. B. 1969. V. 2. P. 890.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (145KB)
3.

Baixar (267KB)
4.

Baixar (392KB)
5.

Baixar (264KB)
6.

Baixar (80KB)
7.

Baixar (95KB)

Declaração de direitos autorais © Е.И. Бочков, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies