Depth of Schemes Embedded in a Unit Cube and Implementing Typical Boolean Functions
- Авторы: Lozhkin S.A.1, Dovgalyuk E.L.1
-
Учреждения:
- Department of Computational Mathematics and Cybernetics
- Выпуск: Том 43, № 4 (2019)
- Страницы: 177-180
- Раздел: Article
- URL: https://journals.rcsi.science/0278-6419/article/view/176327
- DOI: https://doi.org/10.3103/S027864191904006X
- ID: 176327
Цитировать
Аннотация
A class of schemes of functional elements in the standard basis of conjunction, disjunction, and negation elements is considered. For each scheme Σ from this class, in addition to depth D(Σ), its dimension R(Σ) is determined and found to be equal to the minimum dimension of the unit (Boolean) cube that allows isomorphic embedding Σ. In addition to results obtained earlier, it is proved that within the considered model inequality \(D({\Sigma _f}) \ge n + \frac{n}{{{{\log }_2}n}} - O(\frac{n}{{{{({{\log }_2}n)}^2}}})\) is satisfied for typical function f of n variables and for any scheme of functional elements Σf implementing it, such that R(Σf) = O(n), n = 1,2,.... New and more accurate lower estimates of the depth of the schemes implementing the typical functions and having linear dimensions are thus obtained.
Об авторах
S. Lozhkin
Department of Computational Mathematics and Cybernetics
Автор, ответственный за переписку.
Email: lozhkin@cmc.msu.ru
Россия, Moscow, 119991
E. Dovgalyuk
Department of Computational Mathematics and Cybernetics
Автор, ответственный за переписку.
Email: k3neart@gmail.com
Россия, Moscow, 119991
Дополнительные файлы
