Depth of Schemes Embedded in a Unit Cube and Implementing Typical Boolean Functions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A class of schemes of functional elements in the standard basis of conjunction, disjunction, and negation elements is considered. For each scheme Σ from this class, in addition to depth D(Σ), its dimension R(Σ) is determined and found to be equal to the minimum dimension of the unit (Boolean) cube that allows isomorphic embedding Σ. In addition to results obtained earlier, it is proved that within the considered model inequality \(D({\Sigma _f}) \ge n + \frac{n}{{{{\log }_2}n}} - O(\frac{n}{{{{({{\log }_2}n)}^2}}})\) is satisfied for typical function f of n variables and for any scheme of functional elements Σf implementing it, such that Rf) = O(n), n = 1,2,.... New and more accurate lower estimates of the depth of the schemes implementing the typical functions and having linear dimensions are thus obtained.

Sobre autores

S. Lozhkin

Department of Computational Mathematics and Cybernetics

Autor responsável pela correspondência
Email: lozhkin@cmc.msu.ru
Rússia, Moscow, 119991

E. Dovgalyuk

Department of Computational Mathematics and Cybernetics

Autor responsável pela correspondência
Email: k3neart@gmail.com
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2019