🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Depth of Schemes Embedded in a Unit Cube and Implementing Typical Boolean Functions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A class of schemes of functional elements in the standard basis of conjunction, disjunction, and negation elements is considered. For each scheme Σ from this class, in addition to depth D(Σ), its dimension R(Σ) is determined and found to be equal to the minimum dimension of the unit (Boolean) cube that allows isomorphic embedding Σ. In addition to results obtained earlier, it is proved that within the considered model inequality \(D({\Sigma _f}) \ge n + \frac{n}{{{{\log }_2}n}} - O(\frac{n}{{{{({{\log }_2}n)}^2}}})\) is satisfied for typical function f of n variables and for any scheme of functional elements Σf implementing it, such that Rf) = O(n), n = 1,2,.... New and more accurate lower estimates of the depth of the schemes implementing the typical functions and having linear dimensions are thus obtained.

作者简介

S. Lozhkin

Department of Computational Mathematics and Cybernetics

编辑信件的主要联系方式.
Email: lozhkin@cmc.msu.ru
俄罗斯联邦, Moscow, 119991

E. Dovgalyuk

Department of Computational Mathematics and Cybernetics

编辑信件的主要联系方式.
Email: k3neart@gmail.com
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2019