Depth of Schemes Embedded in a Unit Cube and Implementing Typical Boolean Functions
- Авторлар: Lozhkin S.A.1, Dovgalyuk E.L.1
-
Мекемелер:
- Department of Computational Mathematics and Cybernetics
- Шығарылым: Том 43, № 4 (2019)
- Беттер: 177-180
- Бөлім: Article
- URL: https://journals.rcsi.science/0278-6419/article/view/176327
- DOI: https://doi.org/10.3103/S027864191904006X
- ID: 176327
Дәйексөз келтіру
Аннотация
A class of schemes of functional elements in the standard basis of conjunction, disjunction, and negation elements is considered. For each scheme Σ from this class, in addition to depth D(Σ), its dimension R(Σ) is determined and found to be equal to the minimum dimension of the unit (Boolean) cube that allows isomorphic embedding Σ. In addition to results obtained earlier, it is proved that within the considered model inequality \(D({\Sigma _f}) \ge n + \frac{n}{{{{\log }_2}n}} - O(\frac{n}{{{{({{\log }_2}n)}^2}}})\) is satisfied for typical function f of n variables and for any scheme of functional elements Σf implementing it, such that R(Σf) = O(n), n = 1,2,.... New and more accurate lower estimates of the depth of the schemes implementing the typical functions and having linear dimensions are thus obtained.
Авторлар туралы
S. Lozhkin
Department of Computational Mathematics and Cybernetics
Хат алмасуға жауапты Автор.
Email: lozhkin@cmc.msu.ru
Ресей, Moscow, 119991
E. Dovgalyuk
Department of Computational Mathematics and Cybernetics
Хат алмасуға жауапты Автор.
Email: k3neart@gmail.com
Ресей, Moscow, 119991
Қосымша файлдар
