


№ 4 (2023)
- Год: 2023
- Выпуск опубликован: 01.07.2023
- Статей: 9
- URL: https://journals.rcsi.science/0235-0106/issue/view/7998
Статьи
Многокомпонентные сплавы и слоистые композиционные наноматериалы для водородных технологий
Аннотация
Стабильность высокоэнтропийных сплавов (ВЭС) имеет большое значение для различных приложений во многих областях. Данный обзор затрагивает одно из наиболее актуальных направлений в этой сфере – создание устойчивых многокомпонентных мембранных сплавов с повышенными рабочими характеристиками. В обзоре представлен анализ результатов исследований эквиатомных и неэквиатомных четырех- и пятикомпонентных сплавов, которые успешно применяются в качестве мембранных сплавов для водородных технологий. Эффективным методом повышения прочности мембранных сплавов является специальная термическая обработка, в результате которой выделяются вторичные упрочняющие фазы, образуются сверхрешетки. Кроме того, формируется необычная морфология микрозерен в виде кубовидных блоков со скругленными вершинами, сфероидальных и эллипсоидных зерен, состоящих из выделенных в процессе термической обработки упрочняющих термодинамически устойчивых γ' и γ-фаз. Легирование является важным фактором упрочнения ВЭСов. Проведен анализ влияния легирования Ni или Cr на механические свойства ряда многокомпонентных составов. Показано, что легирующие пары Al + Ti или Al + Nb, структурированные в матрицы твердых растворов мембранных сплавов, повышают их прочность, термостабильность, кинетику водорода, стойкость к водородному охрупчиванию. В рамках молекулярной динамики исследован эффект деформационного упрочнения мембранных ВЭС многократной деформацией и установлен механизм создания синергетического эффекта. В обзоре также представлены сравнительно недавно полученные гекса- и пентагональные двумерные структуры, обладающие сверхвысокой прочностью и повышенной термостабильностью и превосходными фотокаталитическими свойствами, такие как дихалькогениды MX2 и их пентагональные конфигурации, а также двумерные сплавы Cu1 – xNix, Ti1 – xNix и соединеня Bi1 – xSbx. Все эти материалы являются эффективными катализаторами диссоциации воды и концентрирования водорода. Особое внимание уделено нейросетевому прогнозированию межатомных потенциалов, как эффективному методу теоретических исследований для поиска новых мембранных ВЭС.



Коррозионное поведение стали 12Х18Н10Т в расплаве LiCl–KCl, содержащем добавки хлоридов f-элементов
Аннотация
При переработке отработавшего ядерного топлива (ОЯТ) предполагается использовать расплав LiCl–KCl (0.49 : 0.51) в инертной атмосфере. Все металлические материалы в данном солевом расплаве крайне подвержены коррозии, к тому же в процессе переработки ОЯТ как жидкая фаза (расплав), так и газовая, насыщаются продуктами распада, которые могут выступать в качестве дополнительных окислителей, усиливая агрессивность среды. В пирохимическую технологию ОЯТ включены операции, такие как мягкое хлорирование, электрорафинирование и металлизация, подразумевающие наличие в расплаве соединений хлоридов редкоземельных металлов (РЗМ) лантана, церия и неодима, а также хлоридов урана(III, IV). В данной работе было исследовано коррозионное поведение стали 12Х18Н10Т в расплаве LiCl–KCl, содержащем добавки NdCl3, CeCl3, LaCl3, UCl3 и UCl4 до 2 мас. %. Коррозионные испытания длительностью 100 ч были выполнены при температуре 500°С в инертной атмосфере аргона. Было установлено, что наличие хлоридов РЗМ значительно снижает деградацию исследуемой стали. Добавление (РЗМ)Cl3 проводит к формированию на поверхности образцов соединения (РЗМ)OCl, толщина и сплошность которых увеличивается в следующем ряду: LaCl3 < NdCl3 < CeCl3. Формирование подобного соединения приводит к торможению коррозионного процесса стали 12Х18Н10Т за счет солевой пассивации поверхности. Добавление в расплав UF4 вызывает значительную коррозию стали 12Х18Н10Т межкристаллитного типа. Введение в расплав UF3 приводит к снижению скорости коррозии, что связано с преимущественным взаимодействием трехвалентного хлорида урана с содержащимся в расплаве растворенным молекулярным кислородом, и формированию на поверхности образцов нестехиометрического соединения с кристаллохимической формулой U3O7 по данным микрорентгеноспектрального анализа.



Низкотемпературный способ электролитического получения сплавов Al–РЗМ в криолитовых расплавах
Аннотация
Исследован процесс электролитического получения сплавов Al–Y и Al–Sc в электролите на основе калиевого криолита KF–NaF(10 мас. %)–AlF3 с криолитовым отношением (КО) 1.5, содержащем оксиды Al2O3, Sc2O3 или Y2O3, в ячейке с вертикальными электродами. Инертным анодом служил сплав Fe–Ni–Cu. Смачиваемый катод представлял из себя графитовую пластинку, покрытую диборидом алюминия. Электролиз проводили при катодной плотности тока 0.2 А/см2 и температуре 830°С. Массу добавки Al2O3 рассчитывали, исходя из величины выхода по току 60%. Добавку Sc2O3 вводили в расплав в количестве 1 мас. %. Массу добавки Y2O3 выбирали на основании величины его растворимости в исследуемом расплаве. Для этого было изучено влияние добавок Y2O3 на температуру ликвидуса квази-бинарной смеси [KF–NaF(10 мас. %)–AlF3 (КО = 1.5)]–Y2O3 и обнаружено, что в отличие от добавок Sc2O3, которые понижают температуру ликвидуса криолитового расплава, небольшие добавки Y2O3 приводят к ее резкому увеличению. Найдено, что эффективность электролитического восстановления Y2O3, по сравнению с алюминотермическим восстановлением, повышается в 10 раз. При прочих равных условиях эффективность электролитического восстановления Y2O3 выше, чем Sc2O3. Получены сплавы Al–Y и Al–Sc с содержанием РЗМ 0.6 мас. %. Однако, время достижения максимального извлечения иттрия значительно превышает время извлечения скандия. Металлографические исследования полученных сплавов показали наличие интерметаллидов Al3Sc и Al2Y. Сделан вывод о принципиальной возможности низкотемпературного электролитического получения сплавов Al–РЗМ в криолитовых расплавах на основе калиевого криолита в вертикальных ячейках с инертным металлическим анодом и смачиваемым катодом.



Способ получения высокоэнтропийного карбида в ионном расплаве
Аннотация
Карбиды тугоплавких металлов TiC, ZrC, HfC, NbC и TaC обладают превосходными физическими, химическими и механическими свойствами в качестве материалов для ультравысокотемпературной керамики. Из них наиболее тугоплавкими являются TaC и HfC, температуры плавления которых приближаются к 4000°C. Нельзя не отметить высокую твердость, прочность и износостойкость тугоплавких карбидов. Отсюда вытекает закономерный интерес к высокоэнтропийным карбидам на их основе, которые становятся важным классом новых керамических материалов, поскольку потенциально обладают более совершенными прикладными свойствами. Однако получение таких материалов классическими металлургическими методами является сложной задачей. В современных исследованиях чаще всего образцы высокоэнтропийных карбидов синтезируют, используя дорогостоящее специальное оборудование (методы плазменно-искрового спекания, высокоэнергетические планетарные мельницы и т.п.) и сравнительно длительную подготовку прекурсоров к производству образцов. В настоящей работе описывается новый подход к синтезу многокомпонентного карбида состава (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C с помощью электрохимического процесса при температуре, не превышающей 1173 K. Метод основан на явлении бестокового переноса металлов в расплавах солей. После проведения последовательного переноса металлов образец отмывался от электролита, затем спекался в вакуумной печи. По данным рентгенофазового анализа полученный высокоэнтропийный карбид представляет собой однофазный твердый раствор с ГЦК структурой. Дифрактограмма синтезированного образца имеет хорошее согласие с расчетной дифрактограммой, полученной по формуле Дебая для суперячейки из 64000 атомов. Компактный образец высокоэнтропийного карбида изготавливался прессованием в пресс-форме таблетки диаметром 10 мм с добавлением кобальта в качестве матричного металла. После вакуумного спекания образец подвергался шлифовке для подготовки к исследованию на сканирующем электронном микроскопе. Было выполнено элементное картирование поверхности образца, которое показало удовлетворительное распределение металлов, входящих в состав высокоэнтропийного карбида. Измеренная микротвердость образца оказалась меньше, чем встречающиеся значения в публикациях других авторов, что может быть связано с некоторой остаточной пористостью образца.



Молекулярно-динамическое моделирование расслоения в расплавах системы Bi–Ga
Аннотация
В данной работе впервые методом молекулярно-динамического моделирования был рассмотрен процесс расслоения в расплавах системы Bi-Ga. Взаимодействие между атомами задавалось при помощи параметризованного по ab initio данным нейросетевого потенциала (модель DeePMD). Параметризация DeePMD-потенциала была выполнена с использованием алгоритма активного машинного обучения. В ходе молекулярно-динамического моделирования расплавы составов GaxBi100 – x где x = 0, 10, …, 90, 100 были охлаждены от 800 до 300 К. Расслоение регистрировалось по характеру изменения парциальной радиальной функции распределения для пары Ga–Bi. Установлено, что DeePMD-потенциал, в исходный тренировочный набор которого не было введено конфигураций, соответствующих расслоенному состоянию, все равно способен воспроизводить расслоение в системе Bi-Ga. При этом, концентрационный диапазон расслоения, определяемый по молекулярно-динамическому моделированию с DeePMD-потенциалом совпадает с экспериментом. Также удалось верно определить смещение максимума купола расслоения в сторону расплавов, богатых галлием. Тем не менее максимум купола расслоения определен недостаточно точно, как Ga80Bi20, вместо экспериментального Ga70Bi30. Помимо этого, определенный температурный диапазон купола расслоения шире, чем в эксперименте. Несмотря на это, использование нейросетевых потенциалов в атомистическом моделировании, как это показано в настоящей работе, может быть эффективно использовано для прогнозирования расслоения в бинарных металлических системах.



Термохимическое исследование образования силицидов, боридов, карбидов в сплаве Fe–Ni–Cr–Cu–Si–B–C
Аннотация
Для определения термохимических характеристик: энтальпии, молярной теплоемкости и энергии Гиббса образования силицидов, боридов и карбидов в сплаве заданного состава (40Fe–31Ni–16Cr–5Cu–5Si–2B–1C) использованы расчетные методики с использованием смешанных схем GGA и GGA + U (полуэмпирически настроенные обобщенные градиентные аппроксимации). В исследовании использовались три модуля программного пакета HSC Chemistry 6.0 (Metso Outotec, версия 6.0, Эспоо, Финляндия). Во-первых, модуль “Reaction Equation” (“Уравнения реакций” – расчет термодинамических функций в интервале температур для индивидуальных веществ или химических реакций) использовался для расчета изменения свободной энергии Гиббса при различных температурах. Во-вторых, для расчета состава каждого химического вещества в равновесном состоянии использовался модуль “Equilibrium Composition” (“Равновесные составы” – расчет равновесных составов фаз при наличии обратимых химических реакций). В-третьих, модуль “H, S, C and G diagrams” (“Графики термодинамических функций” – построение графиков термодинамических функций) использовался для определения относительной фазовой стабильности соединений в зависимости от температуры в виде диаграмм Эллингема. Результаты термохимического моделирования показали, что значения теплоемкости образования упрочняющих соединений в сплаве увеличиваются по мере повышения температуры. Термодинамические расчеты энтальпий упрочняющих фаз в сплаве показали, что при температуре >1400°С имеет место образование силицидов, боридов и карбидов. При рассмотрении ∆G(T) силицидов наблюдается рост значений энергии Гиббса и стремление к стабильности с повышением температуры. При образовании боридов в сплаве наблюдается сильное поглощение тепла и увеличение энергии Гиббса в исследованном интервале температур. Результаты расчета энергии Гиббса в зависимости от температуры показали, что будут образовываться карбиды Ni3C, Fe3C, SiC, B4C, Cr3C2, Cr4C, Cr7C3. Агрегатное и полиморфные превращения происходят с уменьшением значений энергии Гиббса до температуры ~1500°С. С дальнейшим повышением температуры выявлен эффект поглощения тепловой энергии, которое связано с высокой температурой упорядочения структур карбидов. Таким образом, термохимическим исследованием обоснована возможность образования силицидов, боридов, карбидов в сплаве 40Fe–31Ni–16Cr–5Cu–5Si–2B–1C.



Влияние кобальта на плотность и электросопротивление сплавов Al–Ni–Co–Ce в кристаллическом и жидком состояниях
Аннотация
В работе изучены плотность (методом проникающего гамма-излучения) и электрическое сопротивление (бесконтактным методом во вращающемся магнитном поле) стеклообразующих сплавов Al–Ni–Co–Ce с различным соотношением переходных металлов. Установлено существование широкой двухфазной зоны и обнаружены скачкообразные изменения свойств при температурах солидус и ликвидус. Увеличение содержания кобальта с 2 до 4 ат. % приводит к уменьшению плотности сплавов на 2% и возрастанию электросопротивления на 3% в кристаллическом и жидком состояниях. Рассчитаны температурные коэффициенты изменения свойств. Обнаружен гистерезис плотности, возникающий при перегревах расплавов выше 1350 K. Данный факт связан с распадом крупномасштабных микронеоднородностей, существующих в расплавах при нагреве. Показано, что полученные результаты могут быть использованы для оптимизации процесса получения быстрозакаленных сплавов.



Ремпелю Андрею Андреевичу – 65 лет



Архипову Павлу Александровичу – 65 лет


