CORROSION BEHAVIOR OF 12Cr18Ni10Ti STEEL IN LiCl–KCl MELT CONTAINING ADDITIVES OF f-ELEMENT CHLORIDES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

When reprocessing spent nuclear fuel, it is supposed to use LiCl–KCl melt (0.49:0.51) in an inert atmosphere, all metal materials in this salt melt are extremely susceptible to corrosion, besides, during the processing of spent fuel, both the liquid (melt) and the gas phase are saturated with decay products that can act as additional oxidizing agents, increasing the aggressiveness of the environment. The pyrochemical technology of SNF includes operations such as soft chlorination, electrofining and metallization, implying the presence in the melt of compounds of chlorides of rare earth metals lanthanum, cerium and neodymium, as well as uranium(III, IV) chlorides. In this work, the corrosion behavior of 12CR18NI10TI steel in LiCl–KCl melt containing NdCl3, CeCl3, LaCl3, UCl3 and UCl4 additives up to 2 wt % was investigated. Corrosion tests lasting 100 hours were performed at a temperature of 500°C in an inert argon atmosphere. It was found that the presence of REM chlorides significantly reduces the degradation of the steel under study. The addition of (REM)Cl3 leads to the formation of a compound (REM) on the surface of the samples OCl, the thickness and continuity of which increases in the following row: LaCl3 < NdCl3 < CeCl3. The formation of such a compound leads to the inhibition of the corrosion process of steel 12CR18NI10TI due to salt passivation of the surface. The addition of UF4 to the melt causes significant corrosion of 12CR18NI10TI intercrystalline steel. The introduction of UF3 into the melt leads to a decrease in the corrosion rate, which is associated with the predominant interaction of trivalent uranium chloride with dissolved molecular oxygen contained in the melt, and the formation of a non-stoichiometric compound with the crystal chemical formula U3O7 on the surface of samples according to microrentgenospectral analysis.

About the authors

E. A. Karfidov

Institute of High-Temperature Electrochemistry of the UB of the RAS

Email: neekeetina@mail.ru
Russia, Yekaterinburg

E. V. Nikitina

Institute of High-Temperature Electrochemistry of the UB of the RAS

Author for correspondence.
Email: neekeetina@mail.ru
Russia, Yekaterinburg

K. E. Seliverstov

Institute of High-Temperature Electrochemistry of the UB of the RAS

Email: neekeetina@mail.ru
Russia, Yekaterinburg

P. N. Mushnikov

Institute of High-Temperature Electrochemistry of the UB of the RAS

Email: neekeetina@mail.ru
Russia, Yekaterinburg

K. R. Karimov

Institute of High-Temperature Electrochemistry of the UB of the RAS

Email: neekeetina@mail.ru
Russia, Yekaterinburg

References

  1. Smirnov M.V., Ozeryanaya I.N. Korroziya metallov v rasplavlennykh solevykh sredakh i zashchita ot korrozii [Corrosion of metals in molten salt media and protection against corrosion] // Korroziya i zashchita metallov. Itogi nauki i tekhniki. 1973. 2. P. 171–209. [In Russian].
  2. Kochergin V.P. Zashchita metallov ot korrozii v ionnykh rasplavakh i rastvorakh elektrolitov [Protection of metals from corrosion in ionic melts and electrolyte solutions]. Yekaterinburg: Izd-vo UrGU, 1991. [In Russian].
  3. Abramov A.V., Polovov I.B., Rebrin O.I., Volkovich V.A., Lisienko D.G. Corrosion behavior of austenitic steels and their components in niobium-containing chloride melts // Russian Metallurgy. 2014. № 2. P. 159–165.
  4. Nikitina Ye.V., Tkacheva O.Yu., Karfidov E.A., Rudenko A.V., Mullabayev A.R., Medvedev D.A. Vysokotemperaturnaya korroziya v rasplavlennykh solyakh: uch. Posobiye [High-temperature corrosion in molten salts: a textbook]. Yekaterinburg: Izd-vo Ural’skogo universiteta. [In Russian].
  5. Guo Sh., Zhang J., Wu W., Zhou W. // Progress in Materials Science. 2018. 97. P. 448–487. https://doi.org/10.1016/j.pmatsci.2018.05.003
  6. Wang Y., Zhang Sh., Ji X., Wang P., Li W. // Int. J. Electrochem. Sci. 2018. 13. Р. 4891–4900. https://doi.org/10.20964/2018.05.33
  7. Lambrinou K., Charalampopoulou E., Van der Donck T., Delville R., Schryvers D. // J. Nuclear Materials. 2017. 490. P. 9–27. https://doi.org/10.1016/j.jnucmat.2017.04.004
  8. Knödler R. // J Appl Electrochem. 1988. 18. Р. 653–656. https://doi.org/10.1007/BF01022265
  9. Shulga A.V. // J. Nuclear Materials. 2008. 373. № 1–3. P. 44–52. https://doi.org/10.1016/j.jnucmat.2007.04.050
  10. Raiman S.S., Bartels D.M., Was G.S. Radiolysis driven changes to oxide stability during irradiation-corrosion of 316L stainless steel in high temperature water // J. Nuclear Materials. 2017. 493. Р. 40–52.
  11. Kim S.T., Jeon S., Lee I., Park, Y. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel – Part 1. // Corrosion Science. 2010. 52. Р. 1897–1904.
  12. Gou J., Wang Y., Li X., Zhou F. Effect of rare earth oxide nano-additives on the corrosion behavior of Fe-based hardfacing alloys in acid, near-neutral and alkaline 3.5 wt % NaCl solutions // Applied Surface Science. 2018. 431. Р. 143–151.
  13. Raiman S.S., Lee S. Aggregation and data analysis of corrosion studies in molten chloride and fluoride salts // J. Nuclear Materials. 2018. 511. Р. 523–535.
  14. Ukshe Ye.A., Leonova L.S., Bukun N.G. Gazy v rasplavlennykh solyakh [Gases in molten salts] // Sb. Ionnyye rasplavy. 1974. № 1. [In Russian].
  15. Nikolayeva Ye.V. Kinetika katodnogo vosstanovleniya kisloroda v rasplavlennykh khloridakh shchelochnykh metallov [Kinetics of cathodic oxygen reduction in molten alkali metal chlorides]. Dissertation for the degree of Ph.D. Yekaterinburg, 2001. [In Russian].
  16. Hofmeister M., Klein L., Miran H., Rettig R., Virtanen S., Singer R.F. Corrosion behavior of stainless steels and a single crystal superalloy in a ternary LiCl–KCl molten salt // Corrosion Science. 2015. 90. Р. 46–53.
  17. Hoover R.O., Shaltry M.R., Martin S., Sridharan K., Phongikaroon S. Electrochemical studies and analysis of 1–10 wt % UCl3 concentrations in molten LiCl–KCl eutectic // J. Nuclear Materials. 2014. 452. Р. 389–396.
  18. Luo L.-X., Liu Y.-L., Liu N., Wang L., Yuan L.-Y., Chai Z.-F., Shi W.-Q. Electrochemical and thermodynamic properties of Nd (III)/Nd (0) couple at liquid Zn electrode in LiCl–KCl melt // Electrochimica Acta. 2016. 191. Р. 1026–1036.
  19. Liu Y.-L., Yuan L.-Y., Ye G.-A. et al. Co-reduction behaviors of lanthanum and aluminum ions in LiCl–KCl eutectic // Electrochimica Acta. 2014. 147. Р. 104–113.
  20. Bagri P., Simpson M.F. Potentiometric measurement of activity of rare earth chlorides (La, Gd, Ce, Nd) in LiCl–KCl eutectic salt // Electrochimica Acta. 2018. 259. Р. 1120–1128.
  21. Delpech S., Jaskieowicz S., Rodrigues D. Electrochemistry of thorium fluoride in LiCl–KCl eutectic melts and methodology for speciation studies with fluorides ions // Electrochimica Acta. 2014. 144. Р. 383–390.
  22. Kumar K., Smith N.D., Lichtenstein T., Kim H. Electrochemical studies of molten sulfates in LiCl–KCl–Na2SO4 at 700°C // Corrosion Science. 2018. 133. Р. 17–24.
  23. Bargi P., Simpson M.F. Determination of activity coefficient of lanthanum chloride in molten LiCl–KCl eutectic salt as a function of cerium chloride and lanthanum chloride concentrations using electromotive force measurements // J. Nuclear Materials. 2016. 482. P. 248–256.
  24. Guo Gh., Zhuo W., Wang Y., Zhang J. Europium indeced alloy corrosion and ckacking in molten chloride media for nuclear applications // Corrosion Science. 2020. 163. 108279.
  25. Barraza-Fierro J.I., Espinosa-Medina M.A., Hernandez-Hernandez M., Liu H.D., Sosa-Hernandez E. Effect of Li and Cu addition on corrosion of Fe–40 at % Al intermetallics in molten LiCl–KCl eutectic salt // Corrosion Science. 2012. 59. Р. 119–126.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)

Copyright (c) 2023 Э.А. Карфидов, Е.В. Никитина, К.Е. Селиверстов, П.Н. Мушников, К.Р. Каримов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».