PRODUCING METHOD OF HIGH ENTROPY CARBIDE IN AN IONIC MELT

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Refractory metal carbides TiC, ZrC, HfC, NbC and TaC have excellent physical, chemical and mechanical properties as materials for ultra-high temperature ceramics. Of these, the most refractory are TaC and HfC, whose melting points approach 4000°C. It should be noted the high hardness, strength and wear resistance of refractory carbides. Hence, there is a natural interest in high-entropy carbides based on them, which are becoming an important class of new ceramic materials, since they potentially have more advanced applied properties. However, obtaining such materials by classical metallurgical methods is a difficult task. In modern research, samples of high-entropy carbides are most often synthesized using expensive special equipment (methods of plasma-spark sintering, high-energy planetary mills, etc.) and a relatively long preparation of precursors for sample production. This paper describes a new approach to the synthesis of multicomponent carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C using an electrochemical process at a temperature not exceeding 1173 K. The method is based on the phenomenon of currentless metal transfer in molten salts. After the step-by-step transfer of metals, the sample was washed from the electrolyte, then sintered in a vacuum furnace. According to X-ray phase analysis, the resulting high-entropy carbide is a single-phase solid solution with an FCC structure. The diffraction pattern of the synthesized sample is in good agreement with the calculated diffraction pattern obtained by the Debye formula for a supercell of 64 000 atoms. A compact sample of high-entropy carbide was produced by pressing a tablet 10 mm in diameter with the addition of cobalt as a matrix metal. After vacuum sintering, the sample was ground to prepare for examination on a scanning electron microscope. Elemental mapping of the sample surface was performed, which showed a satisfactory distribution of metals that make up the high-entropy carbide. The measured microhardness of the sample turned out to be less than the values found in the publications of other authors, which may be due to some residual sample porosity.

About the authors

A. V. Varaksin

Institute of Metallurgy of the Ural Branch of the RAS

Author for correspondence.
Email: vorax@yandex.ru
Russia, Yekaterinburg

S. A. Petrova

Institute of Metallurgy of the Ural Branch of the RAS

Email: vorax@yandex.ru
Russia, Yekaterinburg

A. A. Rempel

Institute of Metallurgy of the Ural Branch of the RAS

Email: vorax@yandex.ru
Russia, Yekaterinburg

References

  1. Braic M., Braic V., Balaceanu M., Zoita C., Vladescu A., Grigore E. // Surf. Coat. Technol. 2010. 204. P. 2010–2014. https://doi.org/10.1016/j.surfcoat.2009.10.049
  2. Csanádi T., Vojtko M., Dankházi Z., Reece M.J., Dusza J. // J. Eur. Ceram. Soc. 2020. 40. P. 4774–4782. https://doi.org/10.1016/j.jeurceramsoc.2020.04.023
  3. He Y., Peng C., Xin S., Li K., Liang S., Lu X., Kang N., Xue H., Shen X., Shen T. // J. Mater. Sci. 2020. 55. P. 6754–6760. https://doi.org/10.1007/s10853-020-04471-3
  4. Du B., Liu H., Chu Y. // J. Am. Ceram. Soc. 2020. 103. P. 4063–4068. https://doi.org/10.1111/jace.17134
  5. Zhang G.J., Deng Z.Y., Kondo N., Yang J.F., Ohji T. // J. Am. Ceram. Soc. 2000. 83. P. 2330–2338. https://doi.org/10.1111/j.1551-2916.2008.02507.x
  6. Gasch M., Ellerby D., Irby E., Beckman S., Gusman M., Johnson S. // J. Mater. Sci. 2004. 39. P. 5925–5937. https://doi.org/10.1023/B:JMSC.0000041689.90456.af
  7. Sani E., Mercatelli L., Fontani D., Sans J.L., Sciti D. // J. Renew. Sustain. Energy. 2011. 3. 063107. https://doi.org/10.1063/1.3662099
  8. Liu J.X., Kan Y.M., Zhang G.J. // J. Am. Ceram. Soc. 2010. 93. P. 370–373. https://doi.org/10.1111/j.1551-2916.2009.03437.x
  9. Zhang H., Hedman D., Feng P., Han G., Akhtar F. // Dalton Trans. 2019. 48. P. 5161–5167. https://doi.org/10.1039/C8DT04555K
  10. Wang K., Chen L., Xu C., Zhang W., Liu Z., Wang Y., Ouyang J., Zhang X., Fu Y., Zhou Y. // J. Mater. Sci. Technol. 2020. 39. P. 99–105. https://doi.org/10.1016/j.jmst.2019.07.056
  11. Liu D., Gao Y., Liu J., Li K., Liu F., Wang Y., An L. // J. Eur. Ceram. Soc. 2016. 36. P. 2051–2055. https://doi.org/10.1016/j.jeurceramsoc.2016.02.014
  12. Becher P.F., Wei G.C. // J. Am. Ceram. Soc. 1984. 67. P. C-267–C-269. https://doi.org/10.1111/j.1151-2916.1984.tb19694.x
  13. Chamberlain A.L., Fahrenholtz W.G., Hilmas G.E., Ellerby D.T. // J. Am. Ceram. Soc. 2004. 87. P. 1170–1172. https://doi.org/10.1111/j.1551-2916.2004.01170.x
  14. Sarker P., Harrington T., Toher C., Oses C., Samiee M., Maria J.P., Brenner D.W., Vecchio K.S., Curtarolo S. // Nat. commun. 2018. 9. P. 4980. https://doi.org/10.1038/s41467-018-07160-7
  15. Harrington T.J., Gild J., Sarker P., Toher C., Rost C.M., Dippo O.F., McElfresh C., Kaufmann K., Marin E., Borowski L., Hopkins P.E., Luo J., Curtarolo S., Brenner D.W., Vecchio K.S. // Acta Mater. 2019. 166. P. 271–280. https://doi.org/10.1016/j.actamat.2018.12.054
  16. Yan X., Constantin L., Lu Y., Silvain J.F., Nastasi M., Cui B. // J. Am. Ceram. Soc. 2018. 101. P. 4486–4491. https://doi.org/10.1111/jace.15779
  17. Wei X.F., Liu J.X., Li F., Qin Y., Liang Y.C., Zhang G.J. // J. Eur. Ceram. Soc. 2019. 39. P. 2989–2994. https://doi.org/10.1016/j.jeurceramsoc.2019.04.006
  18. Castle E., Csanádi T., Grasso S., Dusza J., Reece M. // Sci. Rep. 2018. 8. P. 8609. https://doi.org/10.1038/s41598-018-26827-1
  19. Demirskyi D., Borodianska H., Suzuki T.S., Sakka Y., Yoshimi K., Vasylkiv O. // Scr. Mater. 2019. 164. P. 12–16. https://doi.org/10.1016/j.scriptamat.2019.01.024
  20. Ye B., Chu Y., Huang K., Liu D. // J. Am. Ceram. Soc. 2019. 102. P. 919–923. https://doi.org/10.1111/jace.16141
  21. Malinovskis P., Fritze S., Riekehr L., von Fieandt L., Cedervall J., Rehnlund D., Nyholm L., Lewin E., Jansson U. // Materi. Des. 2018. 149. P. 51–62. https://doi.org/10.1016/j.matdes.2018.03.068
  22. Braic V., Vladescu A., Balaceanu M., Luculescu C.R., Braic M. // Surf. Coat. Technol. 2012. 211. P. 117–121. https://doi.org/10.1016/j.surfcoat.2011.09.033
  23. Ye B., Wen T., Huang K., Wang C.Z., Chu Y. // J. Am. Ceram. Soc. 2019. 102. P. 4344–4352. https://doi.org/10.1111/jace.16295
  24. Braic V., Balaceanu M., Braic M., Vladescu A., Panseri S., Russo A. // J. Mech. Behav. Biomed. Mater. 2012. 10. P. 197–205. https://doi.org/10.1016/j.jmbbm.2012.02.020
  25. Yang Y., Wang W., Gan G.Y., Shi X.F., Tang B.Y. // Physica B Condens. Matter. 2018. 550. P. 163–170. https://doi.org/10.1016/j.physb.2018.09.014
  26. Zhang Q., Zhang J., Li N., Chen W. // J. Appl. Phys. 2019. 126. 025101. https://doi.org/10.1063/1.5094580
  27. Chicardi E., García-Garrido C., Gotor F.J. // Ceram. Int. 2019. 45. P. 21 858–21 863. http://dx.doi.org/10.1016/j.ceramint.2019.07.195
  28. Chicardi E., García-Garrido C., Hernández-Saz J., Gotor F.J. // Ceram. Int. 2020. 46. P. 21 421–21 430. https://doi.org/10.1016/j.ceramint.2020.05.240
  29. Ye B., Wen T., Liu D., Chu Y. // Corros. Sci. 2019. 153. P. 327–332. http://dx.doi.org/10.1016/j.corsci.2019.04.001
  30. Ye B., Wen T., Chu Y. // J. Am. Ceram. Soc. 2020. 103. P. 500–507. http://dx.doi.org/10.1111/jace.16725
  31. Grasso S., Saunders T., Porwal H., Milsom B., Tudball A., Reece M. // J. Am. Ceram. Soc. 2016. 99. P. 1534–1543. https://doi.org/10.1111/jace.14158
  32. Gild J., Kaufmann K., Vecchio K., Luo J. // Scr. Mater. 2019. 170. P. 106–110. https://doi.org/10.1016/j.scriptamat.2019.05.039
  33. Feng L., Fahrenholtz W.G., Hilmas G.E., Zhou Y. // Scripta Materialia. 2019. 162. P. 90–93. https://doi.org/10.1016/j.scriptamat.2018.10.049.
  34. Ilyshenko N.G., Anfinogenov A.I., Shurov N.I. Vzaimodeystviye metallov v ionnykh rasplavakh [Interaction of metals in ion melts]. M.: Nauka. 1991. [In Russian].
  35. Smirnov M.V. Elektrodnyye potentsialy v rasplavlennykh khloridakh [Electrode potentials in molten chlorides]. M.: Nauka, 1973. [In Russian].
  36. Baraboshkin A.N. Elektrokristallizatsiya metallov iz rasplavlennykh soley [Electrocristallization of metals from molten salts]. M.: Nauka, 1976. [In Russian].

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (75KB)
3.

Download (137KB)
4.

Download (1MB)
5.

Download (1MB)

Copyright (c) 2023 А.В. Вараксин, С.А. Петрова, А.А. Ремпель

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».