Nonclassical relaxation oscillations in neurodynamics
- Авторлар: Glyzin S.D.1, Kolesov A.Y.1, Rozov N.K.2
-
Мекемелер:
- Demidov Yaroslavl State University
- Lomonosov Moscow State University
- Шығарылым: Том 50, № 7 (2016)
- Беттер: 571-585
- Бөлім: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/174575
- DOI: https://doi.org/10.3103/S0146411616070063
- ID: 174575
Дәйексөз келтіру
Аннотация
A modification of the well-known FitzHugh–Nagumo model from neuroscience has been proposed. This model is a singularly perturbed system of ordinary differential equations with a fast variable and a slow variable. The existence and stability of a nonclassical relaxation cycle in this system have been studied. The slow component of the cycle is asymptotically close to a discontinuous function, while the fast component is a δ-like function. A one-dimensional circle of unidirectionally coupled neurons has been considered. The existence of an arbitrarily large number of traveling waves for this chain has been shown. In order to illustrate the increase in the number of stable traveling waves, numerical methods were involved.
Негізгі сөздер
Авторлар туралы
S. Glyzin
Demidov Yaroslavl State University
Хат алмасуға жауапты Автор.
Email: glyzin@uniyar.ac.ru
Ресей, Yaroslavl, 150000
A. Kolesov
Demidov Yaroslavl State University
Email: glyzin@uniyar.ac.ru
Ресей, Yaroslavl, 150000
N. Rozov
Lomonosov Moscow State University
Email: glyzin@uniyar.ac.ru
Ресей, Moscow, 119991
Қосымша файлдар
