Nonclassical relaxation oscillations in neurodynamics


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A modification of the well-known FitzHugh–Nagumo model from neuroscience has been proposed. This model is a singularly perturbed system of ordinary differential equations with a fast variable and a slow variable. The existence and stability of a nonclassical relaxation cycle in this system have been studied. The slow component of the cycle is asymptotically close to a discontinuous function, while the fast component is a δ-like function. A one-dimensional circle of unidirectionally coupled neurons has been considered. The existence of an arbitrarily large number of traveling waves for this chain has been shown. In order to illustrate the increase in the number of stable traveling waves, numerical methods were involved.

Авторлар туралы

S. Glyzin

Demidov Yaroslavl State University

Хат алмасуға жауапты Автор.
Email: glyzin@uniyar.ac.ru
Ресей, Yaroslavl, 150000

A. Kolesov

Demidov Yaroslavl State University

Email: glyzin@uniyar.ac.ru
Ресей, Yaroslavl, 150000

N. Rozov

Lomonosov Moscow State University

Email: glyzin@uniyar.ac.ru
Ресей, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2016