Nonclassical relaxation oscillations in neurodynamics
- Авторы: Glyzin S.D.1, Kolesov A.Y.1, Rozov N.K.2
-
Учреждения:
- Demidov Yaroslavl State University
- Lomonosov Moscow State University
- Выпуск: Том 50, № 7 (2016)
- Страницы: 571-585
- Раздел: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/174575
- DOI: https://doi.org/10.3103/S0146411616070063
- ID: 174575
Цитировать
Аннотация
A modification of the well-known FitzHugh–Nagumo model from neuroscience has been proposed. This model is a singularly perturbed system of ordinary differential equations with a fast variable and a slow variable. The existence and stability of a nonclassical relaxation cycle in this system have been studied. The slow component of the cycle is asymptotically close to a discontinuous function, while the fast component is a δ-like function. A one-dimensional circle of unidirectionally coupled neurons has been considered. The existence of an arbitrarily large number of traveling waves for this chain has been shown. In order to illustrate the increase in the number of stable traveling waves, numerical methods were involved.
Ключевые слова
Об авторах
S. Glyzin
Demidov Yaroslavl State University
Автор, ответственный за переписку.
Email: glyzin@uniyar.ac.ru
Россия, Yaroslavl, 150000
A. Kolesov
Demidov Yaroslavl State University
Email: glyzin@uniyar.ac.ru
Россия, Yaroslavl, 150000
N. Rozov
Lomonosov Moscow State University
Email: glyzin@uniyar.ac.ru
Россия, Moscow, 119991
Дополнительные файлы
