Detection of Threats in Cyberphysical Systems Based on Deep Learning Methods Using Multidimensional Time Series


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method for detecting anomalies in the work of cyberphysical systems by analyzing a multidimensional time series is proposed. The method is based on the use of neural network technologies to predict the values ​​of the time series of the system data and to identify deviations between the predicted value and the current data obtained from the sensors and actuators. The results of experimental studies are presented, which testify to the effectiveness of the proposed solution.

作者简介

M. Kalinin

Peter the Great St.Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: max@ibks.spbstu.ru
俄罗斯联邦, St. Petersburg, 195251

D. Lavrova

Peter the Great St.Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: lavrova@ibks.spbstu.ru
俄罗斯联邦, St. Petersburg, 195251

A. Yarmak

Peter the Great St.Petersburg Polytechnic University

Email: lavrova@ibks.spbstu.ru
俄罗斯联邦, St. Petersburg, 195251

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018