Detection of Threats in Cyberphysical Systems Based on Deep Learning Methods Using Multidimensional Time Series
- 作者: Kalinin M.O.1, Lavrova D.S.1, Yarmak A.V.1
-
隶属关系:
- Peter the Great St.Petersburg Polytechnic University
- 期: 卷 52, 编号 8 (2018)
- 页面: 912-917
- 栏目: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/175675
- DOI: https://doi.org/10.3103/S0146411618080151
- ID: 175675
如何引用文章
详细
A method for detecting anomalies in the work of cyberphysical systems by analyzing a multidimensional time series is proposed. The method is based on the use of neural network technologies to predict the values of the time series of the system data and to identify deviations between the predicted value and the current data obtained from the sensors and actuators. The results of experimental studies are presented, which testify to the effectiveness of the proposed solution.
作者简介
M. Kalinin
Peter the Great St.Petersburg Polytechnic University
编辑信件的主要联系方式.
Email: max@ibks.spbstu.ru
俄罗斯联邦, St. Petersburg, 195251
D. Lavrova
Peter the Great St.Petersburg Polytechnic University
编辑信件的主要联系方式.
Email: lavrova@ibks.spbstu.ru
俄罗斯联邦, St. Petersburg, 195251
A. Yarmak
Peter the Great St.Petersburg Polytechnic University
Email: lavrova@ibks.spbstu.ru
俄罗斯联邦, St. Petersburg, 195251
补充文件
