Detection of Threats in Cyberphysical Systems Based on Deep Learning Methods Using Multidimensional Time Series
- Авторлар: Kalinin M.O.1, Lavrova D.S.1, Yarmak A.V.1
-
Мекемелер:
- Peter the Great St.Petersburg Polytechnic University
- Шығарылым: Том 52, № 8 (2018)
- Беттер: 912-917
- Бөлім: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/175675
- DOI: https://doi.org/10.3103/S0146411618080151
- ID: 175675
Дәйексөз келтіру
Аннотация
A method for detecting anomalies in the work of cyberphysical systems by analyzing a multidimensional time series is proposed. The method is based on the use of neural network technologies to predict the values of the time series of the system data and to identify deviations between the predicted value and the current data obtained from the sensors and actuators. The results of experimental studies are presented, which testify to the effectiveness of the proposed solution.
Негізгі сөздер
Авторлар туралы
M. Kalinin
Peter the Great St.Petersburg Polytechnic University
Хат алмасуға жауапты Автор.
Email: max@ibks.spbstu.ru
Ресей, St. Petersburg, 195251
D. Lavrova
Peter the Great St.Petersburg Polytechnic University
Хат алмасуға жауапты Автор.
Email: lavrova@ibks.spbstu.ru
Ресей, St. Petersburg, 195251
A. Yarmak
Peter the Great St.Petersburg Polytechnic University
Email: lavrova@ibks.spbstu.ru
Ресей, St. Petersburg, 195251
Қосымша файлдар
