Detection of Threats in Cyberphysical Systems Based on Deep Learning Methods Using Multidimensional Time Series


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method for detecting anomalies in the work of cyberphysical systems by analyzing a multidimensional time series is proposed. The method is based on the use of neural network technologies to predict the values ​​of the time series of the system data and to identify deviations between the predicted value and the current data obtained from the sensors and actuators. The results of experimental studies are presented, which testify to the effectiveness of the proposed solution.

Sobre autores

M. Kalinin

Peter the Great St.Petersburg Polytechnic University

Autor responsável pela correspondência
Email: max@ibks.spbstu.ru
Rússia, St. Petersburg, 195251

D. Lavrova

Peter the Great St.Petersburg Polytechnic University

Autor responsável pela correspondência
Email: lavrova@ibks.spbstu.ru
Rússia, St. Petersburg, 195251

A. Yarmak

Peter the Great St.Petersburg Polytechnic University

Email: lavrova@ibks.spbstu.ru
Rússia, St. Petersburg, 195251

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018