Detection of Threats in Cyberphysical Systems Based on Deep Learning Methods Using Multidimensional Time Series
- Авторы: Kalinin M.O.1, Lavrova D.S.1, Yarmak A.V.1
-
Учреждения:
- Peter the Great St.Petersburg Polytechnic University
- Выпуск: Том 52, № 8 (2018)
- Страницы: 912-917
- Раздел: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/175675
- DOI: https://doi.org/10.3103/S0146411618080151
- ID: 175675
Цитировать
Аннотация
A method for detecting anomalies in the work of cyberphysical systems by analyzing a multidimensional time series is proposed. The method is based on the use of neural network technologies to predict the values of the time series of the system data and to identify deviations between the predicted value and the current data obtained from the sensors and actuators. The results of experimental studies are presented, which testify to the effectiveness of the proposed solution.
Ключевые слова
Об авторах
M. Kalinin
Peter the Great St.Petersburg Polytechnic University
Автор, ответственный за переписку.
Email: max@ibks.spbstu.ru
Россия, St. Petersburg, 195251
D. Lavrova
Peter the Great St.Petersburg Polytechnic University
Автор, ответственный за переписку.
Email: lavrova@ibks.spbstu.ru
Россия, St. Petersburg, 195251
A. Yarmak
Peter the Great St.Petersburg Polytechnic University
Email: lavrova@ibks.spbstu.ru
Россия, St. Petersburg, 195251
Дополнительные файлы
