Parameter Uncertainty Propagation in a Rainfall–Runoff Model; Case Study: Karoon-III River Basin


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Conceptual hydrological models are popular tools for simulating land phase of hydrological cycle. Uncertainty arises from a variety of sources such as input error, calibration and parameters. Hydrologic modeling researches indicate that parametric uncertainty has been considered as one of the most important source. The objective of this study was to evaluate parameter uncertainty and its propagation in rainfall-runoff modeling. This study tried to model daily flows and calculate uncertainty bounds for Karoon-III basin, Southwest of Iran, using HEC-HMS (SMA). The parameters were represented by probability distribution functions (PDF), and the effect on simulated runoff was investigated using Latin Hypercube Sampling (LHS) on Monte Carlo (MC). Three chosen parameters, based on sensitivity analysis, were saturated-hydraulic-conductivity (Ks), Clark storage coefficient (R) and time of concentration (tc). Uncertainty associated with parameters were accounted for, by representing each with a probability distribution. Uncertainty bounds was calculated, using parameter sets captured from LHS on parameters PDF of sub-basins and propagating to the model. Results showed that maximum reliability (11%) resulted from Ks propagating. For three parameters, underestimation was more than overestimation. Maximum sharpness and standard deviation (STD) was resulted from propagating Ks. Cumulative Distribution Function (CDF) of flow and uncertainty bounds showed that as flow increased, the width of uncertainty bounds increased for all parameters.

作者简介

Homa Razmkhah

Department of Water Engineering, Marvdasht Branch

编辑信件的主要联系方式.
Email: homarazmkhah@miau.ac.ir
伊朗伊斯兰共和国, Marvdasht

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018