Parameter Uncertainty Propagation in a Rainfall–Runoff Model; Case Study: Karoon-III River Basin


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Conceptual hydrological models are popular tools for simulating land phase of hydrological cycle. Uncertainty arises from a variety of sources such as input error, calibration and parameters. Hydrologic modeling researches indicate that parametric uncertainty has been considered as one of the most important source. The objective of this study was to evaluate parameter uncertainty and its propagation in rainfall-runoff modeling. This study tried to model daily flows and calculate uncertainty bounds for Karoon-III basin, Southwest of Iran, using HEC-HMS (SMA). The parameters were represented by probability distribution functions (PDF), and the effect on simulated runoff was investigated using Latin Hypercube Sampling (LHS) on Monte Carlo (MC). Three chosen parameters, based on sensitivity analysis, were saturated-hydraulic-conductivity (Ks), Clark storage coefficient (R) and time of concentration (tc). Uncertainty associated with parameters were accounted for, by representing each with a probability distribution. Uncertainty bounds was calculated, using parameter sets captured from LHS on parameters PDF of sub-basins and propagating to the model. Results showed that maximum reliability (11%) resulted from Ks propagating. For three parameters, underestimation was more than overestimation. Maximum sharpness and standard deviation (STD) was resulted from propagating Ks. Cumulative Distribution Function (CDF) of flow and uncertainty bounds showed that as flow increased, the width of uncertainty bounds increased for all parameters.

About the authors

Homa Razmkhah

Department of Water Engineering, Marvdasht Branch

Author for correspondence.
Email: homarazmkhah@miau.ac.ir
Iran, Islamic Republic of, Marvdasht

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.