Automorphisms of a Distance-Regular Graph with Intersection Array {176, 135, 32, 1; 1, 16, 135, 176}
- 作者: Makhnev A.A.1,2, Paduchikh D.V.1
-
隶属关系:
- Krasovskii Institute of Mathematics and Mechanics
- Ural Federal University
- 期: 卷 305, 编号 Suppl 1 (2019)
- 页面: S102-S113
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175861
- DOI: https://doi.org/10.1134/S0081543819040114
- ID: 175861
如何引用文章
详细
A distance-regular graph Γ with intersection array {176, 135, 32, 1; 1, 16, 135, 176} is an AT4-graph. Its antipodal quotient \(\overline {\rm{\Gamma }} \) is a strongly regular graph with parameters (672, 176, 40, 48). In both graphs the neighborhoods of vertices are strongly regular with parameters (176, 40, 12, 8). We study the automorphisms of these graphs. In particular, the graph Γ is not arc-transitive. If G = Aut (Γ) contains an element of order 11, acts transitively on the vertex set of Γ, and S(G) fixes each antipodal class, then the full preimage of the group (G/S(G))′ is an extension of a group of order 3 by M22 or U6 (2). We describe automorphism groups of strongly regular graphs with parameters (176, 40, 12, 8) and (672, 176, 40, 48) in the vertex-symmetric case.
作者简介
A. Makhnev
Krasovskii Institute of Mathematics and Mechanics; Ural Federal University
编辑信件的主要联系方式.
Email: makhnev@imm.uran.ru
俄罗斯联邦, Yekaterinburg, 620990; Yekaterinburg, 620002
D. Paduchikh
Krasovskii Institute of Mathematics and Mechanics
编辑信件的主要联系方式.
Email: dpaduchikh@gmail.com
俄罗斯联邦, Yekaterinburg, 620990
补充文件
