Automorphisms of a Distance-Regular Graph with Intersection Array {176, 135, 32, 1; 1, 16, 135, 176}


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A distance-regular graph Γ with intersection array {176, 135, 32, 1; 1, 16, 135, 176} is an AT4-graph. Its antipodal quotient \(\overline {\rm{\Gamma }} \) is a strongly regular graph with parameters (672, 176, 40, 48). In both graphs the neighborhoods of vertices are strongly regular with parameters (176, 40, 12, 8). We study the automorphisms of these graphs. In particular, the graph Γ is not arc-transitive. If G = Aut (Γ) contains an element of order 11, acts transitively on the vertex set of Γ, and S(G) fixes each antipodal class, then the full preimage of the group (G/S(G))′ is an extension of a group of order 3 by M22 or U6 (2). We describe automorphism groups of strongly regular graphs with parameters (176, 40, 12, 8) and (672, 176, 40, 48) in the vertex-symmetric case.

Авторлар туралы

A. Makhnev

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Хат алмасуға жауапты Автор.
Email: makhnev@imm.uran.ru
Ресей, Yekaterinburg, 620990; Yekaterinburg, 620002

D. Paduchikh

Krasovskii Institute of Mathematics and Mechanics

Хат алмасуға жауапты Автор.
Email: dpaduchikh@gmail.com
Ресей, Yekaterinburg, 620990

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019