Automorphisms of a Distance-Regular Graph with Intersection Array {176, 135, 32, 1; 1, 16, 135, 176}
- Авторлар: Makhnev A.A.1,2, Paduchikh D.V.1
-
Мекемелер:
- Krasovskii Institute of Mathematics and Mechanics
- Ural Federal University
- Шығарылым: Том 305, № Suppl 1 (2019)
- Беттер: S102-S113
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175861
- DOI: https://doi.org/10.1134/S0081543819040114
- ID: 175861
Дәйексөз келтіру
Аннотация
A distance-regular graph Γ with intersection array {176, 135, 32, 1; 1, 16, 135, 176} is an AT4-graph. Its antipodal quotient \(\overline {\rm{\Gamma }} \) is a strongly regular graph with parameters (672, 176, 40, 48). In both graphs the neighborhoods of vertices are strongly regular with parameters (176, 40, 12, 8). We study the automorphisms of these graphs. In particular, the graph Γ is not arc-transitive. If G = Aut (Γ) contains an element of order 11, acts transitively on the vertex set of Γ, and S(G) fixes each antipodal class, then the full preimage of the group (G/S(G))′ is an extension of a group of order 3 by M22 or U6 (2). We describe automorphism groups of strongly regular graphs with parameters (176, 40, 12, 8) and (672, 176, 40, 48) in the vertex-symmetric case.
Негізгі сөздер
Авторлар туралы
A. Makhnev
Krasovskii Institute of Mathematics and Mechanics; Ural Federal University
Хат алмасуға жауапты Автор.
Email: makhnev@imm.uran.ru
Ресей, Yekaterinburg, 620990; Yekaterinburg, 620002
D. Paduchikh
Krasovskii Institute of Mathematics and Mechanics
Хат алмасуға жауапты Автор.
Email: dpaduchikh@gmail.com
Ресей, Yekaterinburg, 620990
Қосымша файлдар
