Automorphisms of a Distance-Regular Graph with Intersection Array {176, 135, 32, 1; 1, 16, 135, 176}
- Авторы: Makhnev A.A.1,2, Paduchikh D.V.1
-
Учреждения:
- Krasovskii Institute of Mathematics and Mechanics
- Ural Federal University
- Выпуск: Том 305, № Suppl 1 (2019)
- Страницы: S102-S113
- Раздел: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175861
- DOI: https://doi.org/10.1134/S0081543819040114
- ID: 175861
Цитировать
Аннотация
A distance-regular graph Γ with intersection array {176, 135, 32, 1; 1, 16, 135, 176} is an AT4-graph. Its antipodal quotient \(\overline {\rm{\Gamma }} \) is a strongly regular graph with parameters (672, 176, 40, 48). In both graphs the neighborhoods of vertices are strongly regular with parameters (176, 40, 12, 8). We study the automorphisms of these graphs. In particular, the graph Γ is not arc-transitive. If G = Aut (Γ) contains an element of order 11, acts transitively on the vertex set of Γ, and S(G) fixes each antipodal class, then the full preimage of the group (G/S(G))′ is an extension of a group of order 3 by M22 or U6 (2). We describe automorphism groups of strongly regular graphs with parameters (176, 40, 12, 8) and (672, 176, 40, 48) in the vertex-symmetric case.
Ключевые слова
Об авторах
A. Makhnev
Krasovskii Institute of Mathematics and Mechanics; Ural Federal University
Автор, ответственный за переписку.
Email: makhnev@imm.uran.ru
Россия, Yekaterinburg, 620990; Yekaterinburg, 620002
D. Paduchikh
Krasovskii Institute of Mathematics and Mechanics
Автор, ответственный за переписку.
Email: dpaduchikh@gmail.com
Россия, Yekaterinburg, 620990
Дополнительные файлы
