Automorphisms of a Distance-Regular Graph with Intersection Array {176, 135, 32, 1; 1, 16, 135, 176}


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A distance-regular graph Γ with intersection array {176, 135, 32, 1; 1, 16, 135, 176} is an AT4-graph. Its antipodal quotient \(\overline {\rm{\Gamma }} \) is a strongly regular graph with parameters (672, 176, 40, 48). In both graphs the neighborhoods of vertices are strongly regular with parameters (176, 40, 12, 8). We study the automorphisms of these graphs. In particular, the graph Γ is not arc-transitive. If G = Aut (Γ) contains an element of order 11, acts transitively on the vertex set of Γ, and S(G) fixes each antipodal class, then the full preimage of the group (G/S(G))′ is an extension of a group of order 3 by M22 or U6 (2). We describe automorphism groups of strongly regular graphs with parameters (176, 40, 12, 8) and (672, 176, 40, 48) in the vertex-symmetric case.

Sobre autores

A. Makhnev

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Autor responsável pela correspondência
Email: makhnev@imm.uran.ru
Rússia, Yekaterinburg, 620990; Yekaterinburg, 620002

D. Paduchikh

Krasovskii Institute of Mathematics and Mechanics

Autor responsável pela correspondência
Email: dpaduchikh@gmail.com
Rússia, Yekaterinburg, 620990

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019