Automorphisms of a Distance-Regular Graph with Intersection Array {176, 135, 32, 1; 1, 16, 135, 176}
- Autores: Makhnev A.A.1,2, Paduchikh D.V.1
-
Afiliações:
- Krasovskii Institute of Mathematics and Mechanics
- Ural Federal University
- Edição: Volume 305, Nº Suppl 1 (2019)
- Páginas: S102-S113
- Seção: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175861
- DOI: https://doi.org/10.1134/S0081543819040114
- ID: 175861
Citar
Resumo
A distance-regular graph Γ with intersection array {176, 135, 32, 1; 1, 16, 135, 176} is an AT4-graph. Its antipodal quotient \(\overline {\rm{\Gamma }} \) is a strongly regular graph with parameters (672, 176, 40, 48). In both graphs the neighborhoods of vertices are strongly regular with parameters (176, 40, 12, 8). We study the automorphisms of these graphs. In particular, the graph Γ is not arc-transitive. If G = Aut (Γ) contains an element of order 11, acts transitively on the vertex set of Γ, and S(G) fixes each antipodal class, then the full preimage of the group (G/S(G))′ is an extension of a group of order 3 by M22 or U6 (2). We describe automorphism groups of strongly regular graphs with parameters (176, 40, 12, 8) and (672, 176, 40, 48) in the vertex-symmetric case.
Palavras-chave
Sobre autores
A. Makhnev
Krasovskii Institute of Mathematics and Mechanics; Ural Federal University
Autor responsável pela correspondência
Email: makhnev@imm.uran.ru
Rússia, Yekaterinburg, 620990; Yekaterinburg, 620002
D. Paduchikh
Krasovskii Institute of Mathematics and Mechanics
Autor responsável pela correspondência
Email: dpaduchikh@gmail.com
Rússia, Yekaterinburg, 620990
Arquivos suplementares
