Some Problems in the Theory of Ridge Functions
- Авторлар: Konyagin S.V.1, Kuleshov A.A.2, Maiorov V.E.3
-
Мекемелер:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Laboratory “Multidimensional Approximation and Applications,”
- Technion – Israel Institute of Technology
- Шығарылым: Том 301, № 1 (2018)
- Беттер: 144-169
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175568
- DOI: https://doi.org/10.1134/S0081543818040120
- ID: 175568
Дәйексөз келтіру
Аннотация
Let d ≥ 2 and \(E\subset\mathbb{R}^d\) be a set. A ridge function on E is a function of the form φ(a · x), where \(x=(x_1,...,x_d)\in{E},\;a=(a_1,...,a_d)\in\mathbb{R}^d\;\backslash\left\{0\right\},\;a \cdot x = \sum\nolimits_{j = 1}^d {{a_j}{x_j}}\), and φ is a real-valued function. Ridge functions play an important role both in approximation theory and mathematical physics and in the solution of applied problems. The present paper is of survey character. It addresses the problems of representation and approximation of multidimensional functions by finite sums of ridge functions. Analogs and generalizations of ridge functions are also considered.
Авторлар туралы
S. Konyagin
Steklov Mathematical Institute of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: konyagin@mi.ras.ru
Ресей, ul. Gubkina 8, Moscow, 119991
A. Kuleshov
Laboratory “Multidimensional Approximation and Applications,”
Email: konyagin@mi.ras.ru
Ресей, Moscow, 119991
V. Maiorov
Technion – Israel Institute of Technology
Email: konyagin@mi.ras.ru
Израиль, Haifa, 32000
Қосымша файлдар
